MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO DEPARTAMENTO DE CIÊNCIA E TECNOLOGIA INSTITUTO MILITAR DE ENGENHARIA CURSO DE GRADUAÇÃO EM ENGENHARIA MECÂNICA

JONATHAN CRESPO PEREIRA

MODELAGEM TRIDIMENSIONAL, LEVANTAMENTO DOS COEFICIENTES AERODINÂMICOS E TRAJETÓRIA DO FOGUETE SS-09 TS

RIO DE JANEIRO 2022

JONATHAN CRESPO PEREIRA

MODELAGEM TRIDIMENSIONAL, LEVANTAMENTO DOS COEFICIENTES AERODINÂMICOS E TRAJETÓRIA DO FOGUETE SS-09 TS

Projeto de Final de Curso apresentado ao Curso de Graduação em Engenharia Mecânica do Instituto Militar de Engenharia, como requisito parcial para a obtenção do título de Bacharel em Engenharia Mecânica.

Orientador(es): Victor Santoro Santiago, D.Sc.

Rio de Janeiro 2022 ©2022 INSTITUTO MILITAR DE ENGENHARIA Praça General Tibúrcio, 80 – Praia Vermelha Rio de Janeiro – RJ CEP: 22290-270

Este exemplar é de propriedade do Instituto Militar de Engenharia, que poderá incluí-lo em base de dados, armazenar em computador, microfilmar ou adotar qualquer forma de arquivamento.

É permitida a menção, reprodução parcial ou integral e a transmissão entre bibliotecas deste trabalho, sem modificação de seu texto, em qualquer meio que esteja ou venha a ser fixado, para pesquisa acadêmica, comentários e citações, desde que sem finalidade comercial e que seja feita a referência bibliográfica completa.

Os conceitos expressos neste trabalho são de responsabilidade do(s) autor(es) e do(s) orientador(es).

Pereira, Jonathan Crespo.

MODELAGEM TRIDIMENSIONAL, LEVANTAMENTO DOS COEFICIEN-TES AERODINÂMICOS E TRAJETÓRIA DO FOGUETE SS-09 TS / Jonathan Crespo Pereira. – Rio de Janeiro, 2022. 102 f.

Orientador(es): Victor Santoro Santiago.

Projeto de Final de Curso (graduação) – Instituto Militar de Engenharia, Engenharia Mecânica, 2022.

1. Foguete. 2. Solidworks. 3. Coeficientes aerodinâmicos. 4. Trajetória balística. 5. PRODAS. 6. Tabela de tiro. i. Santiago, Victor Santoro (orient.) ii. Título

CIP - Catalogação na Publicação

Pereira, Jonathan Crespo MODELAGEM TRIDIMENSIONAL, LEVANTAMENTO DOS COEFICIENTES AERODINÂMICOS E TRAJETÓRIA DO FOGUETE SS-09 TS / Jonathan Crespo Pereira. - Rio de Janeiro, 2022. 102 f.

Orientador: Victor Santoro Santiago.

Projeto Final de Curso (graduação) — Instituto Militar de Engenharia, Bacharel em Engenharia Mecânica e de Armamento, 2022.

 Foguete. 2. Solidworks. 3. Coeficientes aerodinâmicos. 4. Trajetória balística. 5. PRODAS.
 I. Santiago, Victor Santoro, orient. II. Título

Elaborado pelo Sistema de Geração Automática da Biblioteca do IME. Os dados foram fornecidos pelo(a) próprio(a) autor(a).

JONATHAN CRESPO PEREIRA

MODELAGEM TRIDIMENSIONAL, LEVANTAMENTO DOS COEFICIENTES AERODINÂMICOS E TRAJETÓRIA DO FOGUETE SS-09 TS

Projeto de Final de Curso apresentado ao Curso de Graduação em Engenharia Mecânica do Instituto Militar de Engenharia, como requisito parcial para a obtenção do título de Bacharel em Engenharia Mecânica.

Orientador(es): Victor Santoro Santiago.

Aprovada em 06 de outubro de 2022, pela seguinte banca examinadora:

Prof. VICTOR SANTORO SANTIAGO - DSc. do IME - Presidente

Prof. RUBENALDO PITHON DE BARROS - M.Sc. do IME

Prof. ANDRÉ LUIZ TENÓRIO REZENDE - D.Sc. do IME

Rio de Janeiro 2022

Este trabalho é dedicado às crianças adultas que, quando pequenas, sonharam em se tornar cientistas.

AGRADECIMENTOS

Os agradecimentos principais são direcionados primeiramente a Deus e minha família que muito me apoiou na elaboração deste projeto final de curso. Aos professores Victor Santoro Santiago, Rubenildo Pithon de Barros e André Luiz Tenório Rezende que muito contribuíram desde quando a concepção do presente projeto era apenas uma ideia até ao acompanhamento dos resultados finais obtidos.

Agradeço a toda equipe do Centro Tecnológico do Exército na qual destaco TC Dal Bello e Cap Ricardo que mesmo com todas as missões diárias sempre se disponibilizaram em receber-me da melhor maneira possível.

Agradecimentos especiais aos membros da Comissão de Absorção de Conhecimentos e Transferência de Tecnologia da Avibras e do Forte Santa Bárbara/Centro de Instrução de Artilharia de Mísseis e Foguetes que muito me auxiliaram com manuais e documentos relacionados ao assunto proposto.

"Seja você quem for, seja qual for a posição social que você tenha na vida, a mais alta ou a mais baixa, tenha sempre como meta muita força, muita determinação e sempre faça tudo com muito amor e com muita fé em Deus, que um dia você chega lá. De alguma maneira você chega lá." (Ayrton Senna)

RESUMO

Neste trabalho é explorado a modelagem tridimensional do foguete SS-09 TS, utilizandose das ferramentas que compõem o programa *Solidworks*. Através do desenho obtido, gerado no *software* já mencionado, determina-se os coeficientes aerodinâmicos do foguete, reproduzindo a trajetória balística, através do *software PRODAS*.

Por fim, buscou-se comparar os resultados obtidos com as tabelas de tiro disponíveis para o foguete estudado.

Palavras-chave: Foguete. Solidworks. Coeficientes aerodinâmicos. Trajetória balística. PRODAS. Tabela de tiro.

ABSTRACT

In this work, the three-dimensional modeling of the SS-09 TS rocket is explored, using the tools that make up the *Solidworks* program. Through the obtained design, generated in the mentioned before *software*, the aerodynamic coefficients of the rocket are determined, reproducing the ballistic trajectory, through the *PRODAS software*.

Finally, we sought to compare the results obtained with the shooting tables available for the rocket studied.

Keywords: Rocket. Solidworks. Aerodynamic coefficients. Ballistic trajectory. PRODAS. Firing table.

LISTA DE ILUSTRAÇÕES

Figura 1 –	Dois foguetes F-114-R-E.	19
Figura 2 –	Fv-108-R com dez tubos montado sobre veículo 4x4 Jeep Willys Overland $\frac{3}{2}$ ton.	20
Figura 3 –	Lancador de foguete F-114-DE com cinco foguetes, montado sobre	_ 0
1.10414 0	reparo Bofors 40/60 em desfile militar de 28 de junho de 1966.	20
Figura 4 –	Lançador de foguetes rotativo acoplado à torre de um M-8 Greyhound	_01
		21
Figura 5 –	Lançador de foguetes montado sobre um M-20 6x6.	21
Figura 6 –	Lançamento de um foguete X-40 do veiculo lançador XLF-40 em testes	~~~
-	realizados na Marambaia, em 11 de agosto de 1982	22
Figura 7 –	O X-40 sobre um reparo auto rebocado montado sobre uma carreta	
-	Sanvas.	22
Figura 8 –	Elementos da trajetória (C6-40)	26
Figura 9 –	Definição coordenadas foguete.	27
Figura 10 –	Força de arrasto (CARLUCCI; JACOBSON, 2008)	28
Figura 11 –	Momento de amortecimento de rotação (CARLUCCI; JACOBSON, 2008).	29
Figura 12 –	Momento de rolagem (CARLUCCI; JACOBSON, 2008)	29
Figura 13 –	Força de sustentação (CARLUCCI; JACOBSON, 2008)	30
Figura 14 –	Forças de arrasto, sustentação, normal e axial (MCCOY, 1998)	31
Figura 15 –	Ilustração do centro de gravidade (CG) e do centro de pressão (CP) do foguete SS-09 TS	32
Figura 16 –	Momento de capotamento (CARLUCCI; JACOBSON, 2008)	32
Figura 17 –	Força e momento Magnus (CARLUCCI; JACOBSON, 2008)	33
Figura 18 –	Força e momento amortecimento de arfagem (CARLUCCI; JACOBSON,	
	2008)	35
Figura 19 –	Estrutura molecular do polibutadieno líquido hidroxilado.	38
Figura 20 –	Fluxograma com as etapas de fabricação do propelente tipo "compo-	
	site"(MARTHO, 2020)	39
Figura 21 –	Constituição do Foguete SS-09 TS (EB70-MT-11.000).	41
Figura 22 –	Constituição da cabeça de guerra do foguete SS-09 TS (EB70-MT-11.000).	41
Figura 23 –	Visão seccionada da cabeça de guerra do foguete SS-09 TS (EB70-MT-	
0	11.000)	42
Figura 24 –	Visão seccionada da espoleta detonadora de impacto AVE-70 M9-B	
0	(EB70-MT-11.000)	43
Figura 25 –	Conjunto de tubeiras com empenas do foguete SS-09 TS (EB70-MT-	-
U U	11.000).	45

Figura 26 – Foguete SS-09 TS (Centro de Catalogação de Defesa - CECADE)	46
Figura 27 – Modelagem tridimensional do foguete SS-09 TS	47
Figura 28 – Vista do propelente em modelagem tridimensional do foguete SS-09 TS	47
Figura 29 – Desenho técnico do foguete SS-09 TS	47
Figura 30 – Mighty Mouse MK4 (PARSCH, 2009)	48
Figura 31 – Sistema Hydra 70 MK 66 com diversos tipos de ogiva (General Dyna-	
mics)	49
Figura 32 – Aba <i>Formatted Results</i> - Coeficientes Aerodinâmicos	51
Figura 33 – Aba <i>Formatted Results</i> - Conversão coeficientes	52
Figura 34 – Aba Plotted Results - C_{X0} x Mach	53
Figura 35 – Aba Plotted Results - C_{Na} x Mach	53
Figura 36 – Aba <i>Plotted Results</i> - <i>CPN</i> x Mach	54
Figura 37 – Aba Plotted Results - C_{xf} x Mach.	54
Figura 38 – Tempo x Deslocamento	56
Figura 39 – Tempo x Velocidade	57
Figura 40 – Extrato da aba <i>Formatted Output</i>	58
Figura 41 – Tempo x Deslocamento	60
Figura 42 – Tempo x Velocidade	60
Figura 43 – Extrato da aba <i>Formatted Results</i>	62
Figura 44 – Comparação do alcance versus erro percentual de alcance da flecha	
entre Fabricante e 4-DOF	64
Figura 45 – Comparação do alcance versus erro percentual de alcance da flecha	
entre Fabricante e 6-DOF	64
Figura 46 – Comparação do alcance <i>versus</i> erro percentual de alcance da flecha entre	
4-DOF e 6-DOF	65
Figura 47 – Comparação do alcance versus erro percentual de elevação entre Fabri-	
cante e 4-DOF	66
Figura 48 – Comparação do alcance versus erro percentual de elevação entre Fabri-	
cante e 6-DOF	66
Figura 49 – Comparação do alcance <i>versus</i> erro percentual de elevação entre 4-DOF	
e 6-DOF	67
Figura 50 – Comparação do alcance <i>versus</i> erro percentual de velocidade entre	
4-DOF e 6-DOF	67
Figura 51 – Comparação das tabelas de tiro	68
Figura 52 – Extrato tela PRODAS - Analysis - Aerodynamics	72
Figura 53 – Aba <i>Geometry inputs</i>	72
Figura 54 – Aba Aero Model	73
Figura 55 – Aba <i>Tabular Results</i>	73
Figura 56 – Extrato tela PRODAS - Analysis - Trajectories	74

Figura 96 –	- Aba Formatted	Results -	continuação				•							•			10	2
-------------	-----------------	-----------	-------------	--	--	--	---	--	--	--	--	--	--	---	--	--	----	---

LISTA DE TABELAS

Tabela 1 –	Parâmetros do foguete SS-09 TS	16
Tabela 2 $\ -$	Parâmetros do foguete Hydra 70	50
Tabela 3 –	Velocidade máxima	52
Tabela 4 –	Tempo até atingir velocidade máxima	33

LISTA DE ABREVIATURAS E SIGLAS

ETE	Escola Técnica do Exército
IME	Instituto Militar de Engenharia
MB	Marinha do Brasil
IMBEL	Indústria de Material Bélico do Brasil
FAB	Força Aérea Brasileira
IPD	Instituto de Pesquisa e Desenvolvimento
CFD	Computational fluid dynamics
СР	Centro de pressão
CG	Centro de gravidade
VLS	Veículo lançador de satélite
PBLH	Polibutadieno líquido hidroxilado
UCF	Unidade de controle de fogo
CECADE	Centro de Catalogação de Defesa
EB	Exército Brasileiro
NOTS	Naval Ordnance Test Station
FFAR	Folding-Fin Aircraft Rocket
USAF	United States Air Force

LISTA DE SÍMBOLOS

F_D	Força de arrasto
ρ	Densidade do ar
S	Área de referência do foguete
C_D	Coeficiente de arrasto
\vec{V}	Vetor velocidade
V	Norma do vetor velocidade
δ	Ângulo de ataque/ângulo de guinada total
C_{D_o}	Coeficiente de arrasto para ângulo de ataque nulo ("zero-yaw")
$C_{D_{\delta^2}}$	Coeficiente de arrasto quadrático
M_{lp}	Momento de amortecimento da rotação
d	Diâmetro de referência do projétil
p	Rotação axial
C_{lp}	Coeficiente de momento de amortecimento da rotação
$M_{l\delta}$	Momento de rolagem
δ_F	Ângulo de inclinação fornecido às aletas
$C_{l\delta}$	Coeficiente de rolagem
F_L	Força de sustentação
$C_{L\alpha}$	Coeficiente de sustentação
F_x	Força axial
C_x	Coeficiente de força axial
C_{Nlpha}	Coeficiente de força normal
M_{α}	Momento de capotamento
$C_{M\alpha}$	Coeficiente de momento de capotamento
F_M	Força Magnus

$C_{Np\alpha}$	Coeficiente da força Magnus
$M_{Mp\alpha}$	Momento Magnus
$C_{Mp\alpha}$	Coeficiente de momento Magnus
$F_{N_{q+\dot{\alpha}}}$	Força amortecimento de arfagem
q_t	Velocidade angular transversal total
q	Velocidade angular de arfagem
r	Velocidade angular de guinada
\dot{lpha}_t	Taxa total de mudança do ângulo de ataque
C_{Nq}	Coeficiente de força de amortecimento de arfagem devido a q_t
$C_{N\dot{lpha}}$	Coeficiente de força de amortecimento de arfagem devido a $\dot{\alpha}$
$rac{d\mathbf{X}}{dt}$	Taxa de variação do vetor unitário
$M_{M_{q+\dot{\alpha}}}$	Momento amortecimento de arfagem

SUMÁRIO

1 1.1 1.2	INTRODUÇÃO	19 23 23
2	REVISÃO BIBLIOGRÁFICA	24
3	FORMULAÇÃO MATEMÁTICA	25
3.1	ELEMENTOS DA TRAJETÓRIA	25
3.2	SISTEMAS DE COORDENADAS EMPREGADO	27
3.3	FORÇAS, MOMENTOS E COEFICIENTES AERODINÂMICOS	27
3.3.1	FORÇA DE ARRASTO	27
3.3.2	MOMENTO DE AMORTECIMENTO DA ROTAÇÃO	28
3.3.3	MOMENTO DE ROLAGEM	28
3.3.4	FORÇA DE SUSTENTAÇÃO	29
3.3.5	MOMENTO DE CAPOTAMENTO	31
3.3.6	FORÇA MAGNUS	33
3.3.7	MOMENTO MAGNUS	33
3.3.8	FORÇA AMORTECIMENTO DE ARFAGEM	34
3.3.9	MOMENTO AMORTECIMENTO DE ARFAGEM	35
3.4	PROPELENTE TIPO " COMPOSITE " PARA FOGUETES	36
3.4.1	SUBSTÂNCIAS OXIDANTES	36
3.4.2	SUBSTÂNCIAS COMBUSTÍVEIS	37
3.4.3	ADITIVOS MECÂNICOS	38
3.4.4	ADITIVOS BALÍSTICOS	38
4	MODELAGEM NUMÉRICA	40
4.1	DESCRIÇÃO DO FOGUETE SS-09 TS	40
4.1.1	CABEÇA DE GUERRA AVC 70 RS	40
4.1.1.1	ESPOLETA AVE 70 M9-B	42
4.1.1.2	OGIVA	43
4.1.1.3	CONJUNTO REFLETOR ANGULAR	44
4.1.2	TUBO-MOTOR	44
4.1.3	TUBEIRA COM EMPENAS	44
4.2	MODELAGEM TRIDIMENSIONAL DO FOGUETE SS-09 TS	45
4.3	PARÂMETROS DO FOGUETE	45
5	COEFICIENTES AERODINÂMICOS	48

5.1	FOGUETES 70 MM	48
5.1.1	HYDRA - 70	49
5.2	RESULTADOS AERODINÂMICOS DO FOGUETE SS-09 TS	50
6	TRAJETÓRIA	55
6.1	RESULTADOS DA TRAJETÓRIA DO FOGUETE SS-09 TS PARA 4-DOF	55
6.2	TABELA DE TIRO DO FOGUETE SS-09 TS PARA 4-DOF	57
6.3	RESULTADOS DA TRAJETÓRIA DO FOGUETE SS-09 TS PARA 6-DOF	58
6.4	TABELA DE TIRO DO FOGUETE SS-09 TS PARA 6-DOF	61
6.5	COMPARAÇÃO DOS RESULTADOS	62
7	CONCLUSÃO	70
	REFERÊNCIAS	71
	APÊNDICE A – COEFICIENTES AERODINÂMICOS - PRODAS .	72
	APÊNDICE B – TRAJETÓRIA DO FOGUETE SS-09 TS PARA 4-DOF - PRODAS	74
	APÊNDICE C – TABELA DE TIRO DO FOGUETE SS-09 TS PARA 4-DOF - PRODAS	77
	APÊNDICE D–TRAJETÓRIA DO FOGUETE SS-09 TS PARA 6-DOF	79
	APÊNDICE E – TABELA DE TIRO DO FOGUETE SS-09 TS PARA 6-DOF - PRODAS	82
	ANEXO A – FORMATTED RESULTS - COEFICIENTES AERO- DINÂMICOS - PRODAS	83
	ANEXO B – PLOTTED RESULTS - PRODAS	87
	ANEXO C – TABELA DE TIRO COM 4-DOF - PRODAS	95
	ANEXO D – TABELA DE TIRO COM 6-DOF - PRODAS	99

1 INTRODUÇÃO

Pode-se dizer que após a Segunda Guerra Mundial (1939-1945), o Exército Brasileiro (EB) começou a dedicar-se ao estudo de mísseis e foguetes para o emprego em suas forças de combate, visando acompanhar o que faziam os outros principais exércitos do mundo na área. Tem-se relato que o primeiro grupo dedicado a esses estudos no Brasil iniciou-se na Escola Técnica do Exército (ETE), atual Instituto Militar de Engenharia (IME). (STEPHANI, 2014)

Em 1950, iniciou-se o primeiro projeto de foguete, denominado F-114-R/E, conforme Figura 1, propelido à pólvora, com corpo de 114 mm de diâmetro, 1,80 m de comprimento e um alcance de 22 quilômetros. Na época, buscou-se a utilização de tal tubo, não por questões técnicas, mas pelo fato que o mesmo já estava disponível por ser fabricado pela Marinha do Brasil (MB). Apesar do projeto ter gerado bons resultados, o mesmo foi abandonado pela falta de êxito em pesquisas relacionadas à área de motores e combustível líquido. (STEPHANI, 2014)

Figura 1 – Dois foguetes F-114-R-E. Fonte: Expedito Carlos Stephani Bastos, 2014.

Em 1956, foi desenvolvido o sistema de lançadores múltiplos, denominado F-108-R, utilizando foguetes de 108 mm com tubeiras e um sistema elétrico de disparo. Tal lançador

contava com uma quantidade de tubos variando de 10 a 16 unidades e podia ser acoplado no Jeep Willys Overland $\frac{3}{4}$ ton, chamado Fv-108-R.

Figura 2 – Fv-108-R com dez tubos montado sobre veículo 4x4 Jeep Willys Overland $\frac{3}{4}$ ton.

Fonte: Expedito Carlos Stephani Bastos, 2014.

Com o conhecimento já adquirido, foi possível o desenvolvimento do F-114-DE. Um foguete de duplo-estágio propelido por combustível sólido de base dupla (BD560) produzido na Indústria de Material Bélico do Brasil (IMBEL). Tal foguete era supersônico, atingindo uma velocidade de Mach 3 (3715 km/h), alcance de 30 km e uma carga útil de 3 kg. No primeiro estágio, ele possuía comportamento semelhante ao foguete F-114-R/E, já para a ignição do segundo estágio foi desenvolvido uma válvula de passagem de chama que permitia que o mesmo fosse iniciado sem a utilização de qualquer outro dipositivo. Esse foguete era utilizado sobre os reboques de canhões antiaéreos Bofors 40 mm/L60 com configuração de 5 foguetes por reboque.

Figura 3 – Lançador de foguete F-114-DE com cinco foguetes, montado sobre reparo Bofors 40/60 em desfile militar de 28 de junho de 1966.

Fonte: Exército Brasileiro.

Entre 1966 e 1968, dois blindados, denominados M-20 e M-8 GREYHOUND, foram utilizados como plataforma de desenvolvimento, gerando dois projetos de lançadores de foguetes de 81 mm. Para tal, buscou-se aproveitar os tubos lançadores de foguetes e munições já utilizados nos aviões P-47 da Força Aérea Brasileira (FAB), gerando-se dois protótipos. Embora ambos os protótipos utilizassem a mesma plataforma, possuíam sistemas de lançamento distintos. Enquanto um utilizava dois sistemas rotativos de lançamento acoplado nas laterais da torre original, com um tubo para cada conjunto lançador; o outo era um sistema adaptado em uma nova torre, com tubos lançadores de sete tubos cada. Tais sistemas era bem semelhantes ao soviético "Katiusha"e o alemão "Nebelwefer", ambos utilizados na Segunda Guerra Mundial.

Figura 4 – Lançador de foguetes rotativo acoplado à torre de um M-8 Greyhound 6x6. Fonte: Exército Brasileiro.

Figura 5 – Lançador de foguetes montado sobre um M-20 6x6. Fonte: Expedito Carlos Stephani Bastos, 2014.

Em 1972, através de estudos realizados pelo Instituto de Pesquisa e Desenvolvimento (IPD) surge o foguete denominado X-40 com alcance de 68 km, carga útil de 150 kg impulsionado por propelente sólido do tipo "composite". O mesmo chegou a ter duas configurações, uma com acoplamento sobre um veículo blindado sobre lagartas denominado XLF - 40 e outra montado sobre uma carreta Sanvas de duas rodas auto rebocadas.

Figura 6 – Lançamento de um foguete X-40 do veículo lançador XLF-40 em testes realizados na Marambaia, em 11 de agosto de 1982.

Fonte: Expedito Carlos Stephani Bastos, 2014.

Figura 7 – O X-40 sobre um reparo auto rebocado montado sobre uma carreta Sanvas. Fonte: Expedito Carlos Stephani Bastos, 2014.

Com o desenvolvimento do X-40, permitiu-se que a indústria nacional avançasse um pouco mais nesta área, tornando possível o desenvolvimento do Sistema de Artilharia de Saturação de Área ASTROS - II.

A família de foguetes ASTROS compreende os TS-09 (objeto de estudo do presente projeto), SS-30, SS-40, SS-60 e SS-80, com alcances que variam de 9 a 85 km a nível do mar.

1.1 Motivação

A utilização de mísseis e foguetes nos combates modernos vem crescendo amplamente, sendo de grande valia o estudo dos mesmos a fim de que seja disponibilizado a sociedade brasileira maior segurança no monitoramento das fronteiras, florestas e recursos naturais, bem como garantir a hegemonia frente a países vizinhos, elevando o Brasil a um outro nível internacional, diante das pesquisas em novos segmentos do setor espacial.

Logo, pode-se dizer que a pesquisa e o desenvolvimento de foguetes balísticos em território nacional é fundamental para soberania e para o desenvolvimento da base industrial de defesa, tornando o país referência juntamente com outras potências já consolidadas nesse setor.

1.2 Objetivos

O projeto em questão visa realizar a modelagem tridimensional do Foguete SS-09 TS, utilizando-se das ferramentas que compõe o programa *Solidworks*.

Através do desenho, gerado no software *Solidworks*, determinar os coeficientes aerodinâmicos do foguete, reproduzindo a trajetória balística, através do software *PRODAS* que permite através de seu banco de dados projetar novos projéteis e analisar a eficácia de munições novas e/ou já existentes.

Por último, será comparado os resultados obtidos com as tabelas de tiro disponíveis para o foguete estudado.

2 REVISÃO BIBLIOGRÁFICA

O manual de campanha (C 6-40, 2001) apresenta as noções básicas iniciais quanto aos elementos da trajetória, assim como os fatores externos controláveis e não controláveis presentes na balística externa dos projéteis. Deste manual, foi possível realizar no presente projeto uma breve abordagem teórica e a possibilidade de definir conceitos já largamente utilizadas e conhecidas no meio militar.

MCCOY (1998) e CARLUCCI; JACOBSON (2008) apresentam os principais conceitos e formulações quanto às forças, momentos e coeficientes aerodinâmicos levados em consideração no presente projeto. Definindo-se o sistema de coordenadas tornou-se possível a abordagem de conceitos introdutórios relevantes a serem estudados com o objetivo de inferir a respeito dos coeficientes aerodinâmicos e da trajetória balística do foguete SS-09 TS.

O manual técnico (EB70-MT-11.000, 2020) aborda os principais foguetes pertencentes ao sistema ASTROS. Neste manual, permite-se a descrição do foguete SS-09 TS, abordando-se os principais componentes presentes no foguete, com destaque para cabeça de guerra, turbo motor e tubeira com empenas.

BARBOSA et al. (2005) através do projeto apresentado, buscou realizar a análise da trajetória balística do projétil M1 105mm a partir de três abordagens diferentes: Modelo massa-ponto; modelo massa-ponto modificado; e o modelo de seis graus de liberdade (6-DOF), a partir de dados aerodinâmicos e das propriedades de massa já existentes no PRODAS. Dessa forme, através de diferentes situações de lançamento, foram feitas comparações entre os resultados obtidos por cada modelo de abordagem da trajetória.

BARANOWSKI; FRANT (2017) buscaram comparar dois métodos para obtenção dos coeficientes aerodinâmicos do míssil não guiado de 122mm. Para tanto, utilizam-se de um método teórico-experimental através do software PRODAS e um método teórico utilizando o software ANSYS.

Em DUPIUS (2001), estima-se os coeficientes aerodinâmicos a partir de três modelos empíricos-teóricos e um modelo *computational fluid dynamics* (CFD), para posteriormente serem utilizados em um programa que aborda a trajetória em um modelo de seis graus de liberdades (6-DOF) para prever e comparar performance com os resultados de voo livre.

MAAG; KLINGENBERG (1996) enumera as motivações do estudo das técnicas de propulsão modernas que visam: aumentar a energia cinética do projétil, aumentar a letalidade, reduzir custos, aumentar a confiabilidade e diminuir a vulnerabilidade a falhas.

3 FORMULAÇÃO MATEMÁTICA

Neste capítulo serão abordados conceitos importantes para o entendimento da trajetória do Foguete SS-09 TS extraídos do manual do EB, seguido por uma descrição matemática dos efeitos resultantes de forças, momentos e coeficientes aerodinâmicos e apresentação do propelente "composite"utilizado pelo foguete SS-09 TS.

3.1 ELEMENTOS DA TRAJETÓRIA

Para o entendimento da nomenclatura utilizada ao longo do presente projeto, torna-se necessário definir alguns conceitos que serão citados a seguir, com base no manual C 6-40:

• Trajetória: É a curva descrita pelo centro de gravidade em seu trajeto da boca da peça ao ponto de incidência ou de arrebentamento;

• Origem: É a posição do centro de gravidade do projetil no momento em que deixa a boca da peça. Para simplificar outras definições, este termo pode ser usado para indicar o centro da boca da peça quando apontada;

• Linha de sítio - É a linha que une a origem a um determinado ponto do terreno, normalmente o alvo. Como o presente projeto tem como foco comparar os resultados obtidos no software *PRODAS* com a tabela de tiro do foguete SS-09 TS, a linha de sítio estará fixa no plano horizontal;

• Ângulo de sítio - É o ângulo vertical formado pela linha de sítio e pelo plano horizontal. É referido, às vezes, como sítio topográfico. Como a linha de sítio estará fixa na horizontal, o ângulo de sítio será considerado nulo;

• Correção complementar de sítio - É a correção aplicada ao ângulo de sítio, a fim de corrigir a deformação da trajetória, quando introduzimos o ângulo de sítio (deformação causada pela ação da gravidade sobre o projetil na trajetória);

• Sítio total - É a soma do ângulo de sítio com a correção complementar de sítio.

• Linha de projeção: A linha tangente à trajetória no momento em que o projetil deixa a origem;

• Ângulo de projeção - É o ângulo vertical formado pelas linhas de sítio e de projeção;

• Plano de projeção - É o plano vertical que contém a linha de projeção;

• Ponto de queda - Ponto no qual a trajetória encontra de novo o plano horizontal

que passa pela boca da peça;

• Linha de queda - É a linha tangente à trajetória no ponto de queda;

• Ângulo de queda (ω) - É o ângulo vertical formado pela linha de queda e o plano horizontal. Pode ser expresso por sua tangente;

• Ponto de incidência (ponto de impacto) - Ponto onde o projetil atinge o solo ou obstáculo;

• Linha de incidência - É a linha tangente à trajetória no ponto de incidência;

• Ângulo de incidência - É o ângulo formado pela linha de incidência e um plano tangente à superfície no ponto de incidência;

• Ângulo de chegada - É o ângulo formado pela linha de incidência e a linha de sítio.

• Derivação angular - É o ângulo segundo o qual é vista, da peça, a derivação linear. À derivação angular, dá-se comumente o nome de derivação ou deriva;

• Duração de trajeto - É o tempo, expresso em segundos, que o projetil gasta para percorrer a trajetória, da origem ao ponto de queda;

• Base da trajetória - É a linha reta que une a origem ao ponto de queda;

• Ponto de arrebentamento - Ponto da trajetória onde ocorre a explosão do projetil;

• Alcance - É o comprimento, medido no plano horizontal da boca da arma, da distância entre a origem e o ponto de queda, ponto de impacto ou ponto de arrebentamento.

Figura 8 – Elementos da trajetória (C6-40).

3.2 SISTEMAS DE COORDENADAS EMPREGADO

Como a literatura sobre aerodinâmica e balística é bastante ampla e diversificada buscou-se, com a finalidade de padronizar o referencial utilizado para definir as equações de movimento, empregar o sistema de coordenadas adotado por Mccoy (1980), uma vez que com esse referencial (eixo y considerado positivo apontando para cima e eixo x considerado positivo apontando para a direita), conforme Figura 9, torna-se mais intuitivo e de mais fácil compreensão.

Figura 9 – Definição coordenadas foguete.

3.3 FORÇAS, MOMENTOS E COEFICIENTES AERODINÂMI-COS

Com o objetivo de levar-se em consideração a ação das forças, momentos e coeficientes aerodinâmicas presentes no movimento do foguete, buscou-se descrever o efeito e o equacionamento dos mesmos a seguir.

3.3.1 FORÇA DE ARRASTO

É a força aerodinâmica clássica, também referenciada como resistência do ar. É um vetor com a mesma direção do vetor velocidade, porém com sentido contrário, desacelerando o projetil, conforme ilustrado na Figura 10 (MCCOY, 1998).

Seu módulo depende da área da seção transversal do projetil, assim como da densidade do ar e da velocidade, dado pela fórmula:

$$F_D = -\frac{1}{2}\rho SC_D \vec{V}V \tag{3.1}$$

onde ρ é a densidade do ar, S é a área de referência do foguete, C_D é o coeficiente de arrasto e \vec{V} é o vetor velocidade.

Figura 10 – Força de arrasto (CARLUCCI; JACOBSON, 2008).

Vale ressaltar que o coeficiente de arrasto pode ser uma função do ângulo de guinada (yaw). De uma forma mais geral, pode-se definir o coeficiente por:

$$C_D = C_{D_o} + C_{D_{s2}}\delta^2 \tag{3.2}$$

onde δ é denominado guinada total e definido como:

$$\delta = \sin \alpha_t \tag{3.3}$$

3.3.2 MOMENTO DE AMORTECIMENTO DA ROTAÇÃO

Como pode ser visto na Figura 11, quando um projétil rotaciona em um meio, a interação viscosa do meio e da superfície do projétil é tal que o projétil irá desacelerar a rotação durante o vôo (MCCOY, 1998). Esse fenômeno é explicado por um momento aplicado ao projétil, dado por:

$$M_{lp} = \frac{1}{2}\rho V^2 S d \frac{pd}{V} C_{lp} \tag{3.4}$$

onde d é o diâmetro de referência do projétil, p é a rotação axial (geralmente medido em radianos por segundo e positivo para rotação à direita) e C_{lp} é o coeficiente de momento de amortecimento da rotação.

3.3.3 MOMENTO DE ROLAGEM

Quando alguns projéteis possuem aletas ou jatos permitem que a taxa de rotação aumente, implementando um torque de rolagem ao projétil (CARLUCCI; JACOBSON, 2008).

Figura 11 – Momento de amortecimento de rotação (CARLUCCI; JACOBSON, 2008).

$$M_{l\delta} = \frac{1}{2}\rho V^2 S d\delta_F C_{l\delta} \tag{3.5}$$

onde δ_F é o ângulo de inclinação fornecido às aletas para gerar a sustentação necessária para garantir a rotação e $C_{l\delta}$ é o coeficiente do momento de rolagem.

Pode-se dizer que para um foguete com aletas/empenas o momento de rolamento é o responsável por aumentar a rotação enquanto que o momento de amortecimento da rotação tende a diminuí-la. Logo, esses momentos se opõem e o resultado é que a rotação deve aproximar-se de um valor de estado estacionário, após a interação dos mesmos (MCCOY, 1998). Na Figura 12, ilustra-se o momento de rolagem.

Figura 12 – Momento de rolagem (CARLUCCI; JACOBSON, 2008).

3.3.4 FORÇA DE SUSTENTAÇÃO

É a força responsável por manter a sustentação do projetil no ar, e sempre está na direção perpendicular à trajetória, no plano contendo a trajetória e o eixo de simetria do projetil (MCCOY, 1998), conforme está representado na Figura 13.

A força de sustentação pode ser definida de modo vetorial ou escalar pela Equação 3.6 e 3.7, respectivamente (CARLUCCI; JACOBSON, 2008):

$$F_L = \frac{1}{2}\rho SC_{L\alpha}[\mathbf{V} \times (\mathbf{x} \times \mathbf{V})]$$
(3.6)

ou

$$F_L = \frac{1}{2}\rho V^2 S C_{L\alpha} \delta \tag{3.7}$$

onde o coeficiente de sustentação $C_{L\alpha}$ é definido por:

$$C_{L\alpha} = C_{L\alpha_0} + C_{L\alpha_2}\delta^2 \tag{3.8}$$

Figura 13 – Força de sustentação (CARLUCCI; JACOBSON, 2008).

Vale ressaltar que para um projétil simétrico, onde o ângulo de ataque (δ) seja nulo não haverá força de sustentação.

O software *PRODAS* busca trabalhar com eixos paralelos e perpendiculares ao eixo de simetria do foguete, ao invés de eixos paralelos e perpendiculares à trajetória, como citado anteriormente. Para tal, as forças de arrasto e sustentação são substituídas pela força axial e pela força normal, conforme ilustrado na Figura 14.

A força axial e normal são dadas pelas Equações (3.9) e (3.10), respectivamente.

$$F_X = \frac{1}{2}\rho V^2 S C_X \tag{3.9}$$

$$F_N = \frac{1}{2}\rho V^2 S C_{N\alpha} sin\alpha_t \tag{3.10}$$

onde C_X é o coeficiente de força axial e $C_{N\alpha}$ é o coeficiente de força normal.

Da Figura 14, pode-se inferir que:

$$F_D = F_N sin\alpha_t - F_X cos\alpha_t \tag{3.11}$$

$$F_L = F_N \cos\alpha_t + F_X \sin\alpha_t \tag{3.12}$$

Substituindo as Equações (3.1), (3.7), (3.9) e (3.10) na Equação (3.11) e (3.12), temos:

Figura 14 – Forças de arrasto, sustentação, normal e axial (MCCOY, 1998).

$$C_D = C_{N\alpha} sin^2 \alpha_t - C_X cos \alpha_t \tag{3.13}$$

$$C_{L\alpha} = C_{N\alpha} \cos\alpha_t + C_X \tag{3.14}$$

Dessa forma, através das Equações (3.13) e (3.14) permite-se encontrar uma relação direta entre os eixos do corpo e os eixos utilizados na trajetória.

Como a força normal também apresenta um comportamento não-linear, similar ao observado para o coeficiente de sustentação, tem-se:

$$C_{N\alpha} = C_{N\alpha_0} + C_{N\alpha_2}\delta^2 \tag{3.15}$$

3.3.5 MOMENTO DE CAPOTAMENTO

Antes de definir o momento de capotamento é válido apresentar duas grandezas importantes para determinação desse conceito: centro de pressão (CP) e centro de gravidade (CG).

O CG é o local no projétil onde toda a massa pode ser concentrada para que, para uma análise, o vetor gravitacional opere neste ponto. O CP é o ponto pelo qual um vetor pode ser traçado, ou seja, a resultante de todas as forças de pressão infinitesimais que atuam sobre o projétil. Vale ressaltar que para a maioria dos projéteis estabilizados por aletas, o CG está à frente do CP, conforme ilustrado na Figura 15 (CARLUCCI; JACOBSON, 2008).

Figura 15 – Ilustração do centro de gravidade (CG) e do centro de pressão (CP) do foguete SS-09 TS.

A separação do CP e CG dá origem a um momento de capotamento em todos os projéteis, conforme ilustrado na Figura 16 (CARLUCCI; JACOBSON, 2008)).

Figura 16 – Momento de capotamento (CARLUCCI; JACOBSON, 2008).

Além disso, vale ressaltar que este momento é estabilizador para os projéteis estabilizados por aletas e desestabilizador para projéteis estabilizados por rotação. O momento de capotamento é definido como:

$$M_{\alpha} = \frac{1}{2}\rho S dV C_{M\alpha} (\mathbf{V} \times \mathbf{x})$$
(3.16)

ou

$$M_{\alpha} = \frac{1}{2}\rho V^2 S dC_{M\alpha} \delta \tag{3.17}$$

onde o coeficiente de momento de capotamento é dado por:

$$C_{M\alpha} = C_{M\alpha0} + C_{M\alpha2}\delta^2 \tag{3.18}$$

3.3.6 FORÇA MAGNUS

É a força gerada pela diferença de pressão ao redor de um objeto que gira. Ela atua na direção paralela ao eixo lateral do projetil, sendo também a responsável pelo desvio lateral da trajetória, conforme ilustrado na Figura 17 (MCCOY, 1998).

$$F_{N_{p\alpha}} = \frac{1}{2}\rho SV\left(\frac{pd}{V}\right)C_{Np\alpha}(\mathbf{V}\times\mathbf{x})$$
(3.19)

ou

$$F_{N_{p\alpha}} = \frac{1}{2}\rho V^2 S\left(\frac{pd}{V}\right) C_{Np\alpha}\delta$$
(3.20)

onde o coeficiente da força Magnus é dado por:

$$C_{Np\alpha} = C_{Np\alpha0} + C_{Np\alpha2}\delta^2 \tag{3.21}$$

Figura 17 – Força e momento Magnus (CARLUCCI; JACOBSON, 2008).

3.3.7 MOMENTO MAGNUS

Apesar de muitas vezes a força Magnus ser considerada insignificante quando comparada às outras forças que atuam no projétil, o mesmo não acontece com o momento desenvolvido pela força, sendo de considerável relevância e contribuindo significativamente para a estabilidade do projétil (CARLLUCI, 2008). O momento Magnus é dado por:

$$M_{Mp\alpha} = \frac{1}{2}\rho SVd\left(\frac{pd}{V}\right)C_{Mp\alpha}[\mathbf{x}\times(\mathbf{V}\times\mathbf{x})]$$
(3.22)

$$M_{Mp\alpha} = \frac{1}{2}\rho V^2 Sd\left(\frac{pd}{V}\right)C_{Mp\alpha}\delta\tag{3.23}$$

onde o coeficiente de momento Magnus é dado por:

$$C_{Mp\alpha} = C_{Mp\alpha0} + C_{Mp\alpha2}\delta^2 \tag{3.24}$$

3.3.8 FORÇA AMORTECIMENTO DE ARFAGEM

É a tendência de um projétil de cessar seu movimento de arfagem devido à resistência do ar, conforme ilustrado na Figura 18. Sendo descrito por:

$$F_{N_{q+\dot{\alpha}}} = \frac{1}{2}\rho VSd\left(\frac{d\mathbf{x}}{dt}\right)C_{N_{q}} + \frac{1}{2}\rho VSdC_{N_{\dot{\alpha}}}\left(\frac{d\mathbf{x}}{dt} - \frac{d\mathbf{l}}{dt}\right)$$
(3.25)

ou

$$F_{N_{q+\dot{\alpha}}} = \frac{1}{2}\rho V^2 S\left[\left(\frac{q_t d}{V}\right)C_{N_q} + \left(\frac{\dot{\alpha}_t d}{V}\right)C_{N_{\dot{\alpha}}}\right]$$
(3.26)

 $\operatorname{com} q_t$ definido por:

$$q_t = \sqrt{q^2 + r^2} \tag{3.27}$$

onde q_t é a velocidade angular transversal total, q é a velocidade angular de arfagem, r é a velocidade angular de guinada (derrapagem), $\dot{\alpha}_t$ a taxa total de mudança do ângulo de ataque, C_{N_q} coeficiente de força de amortecimento de arfagem devido a q_t , $C_{N_{\dot{\alpha}}}$ coeficiente de força de amortecimento de arfagem devido a $\dot{\alpha}_t$ e $\left(\frac{d\mathbf{x}}{dt}\right)$ taxa de variação do vetor unitário.

$$\dot{\alpha}_t = \frac{d\alpha_t}{dt} \tag{3.28}$$

Vale destacar que o amortecimento de arfagem ocorre através de dois movimentos. O primeiro devido a taxa de arfagem q, enquanto o segundo é desenvolvido por causa da resistência à mudança do ângulo de ataque. No geral, os dois coeficientes são quase sempre escritos como uma soma (CARLUCCI; JACOBSON, 2008).

Relacionando-se as Equações (3.25) e (3.26) e combinando-se com os coeficientes pode-se escrever que:

$$F_{N_{q+\dot{\alpha}}} = \frac{1}{2}\rho VSd\left(C_{N_q} + C_{N_{\dot{\alpha}}}\right)\frac{d\mathbf{x}}{dt}$$
(3.29)

ou
$$F_{Nq+\dot{\alpha}}$$

$$q_{t}$$

$$\dot{\alpha}_{t}$$

$$V, I$$

$$Trajectory$$

 $F_{N_{q+\dot{\alpha}}} = \frac{1}{2}\rho V^2 Sd\left(\frac{q_t d}{V}\right) \left(C_{N_q} + C_{N_{\dot{\alpha}}}\right)$

Figura 18 – Força e momento amortecimento de arfagem (CARLUCCI; JACOBSON, 2008).

3.3.9 MOMENTO AMORTECIMENTO DE ARFAGEM

Assim como a força Magnus, a força de amortecimento de arfagem é geralmente negligenciada, pois é considerada pequena em comparação às outras forças, como sustentação e arrasto. Contudo, o momento causado por este amortecimento de arfagem é frequentemente significativo (CARLUCCI; JACOBSON, 2008). Na Figura 18, ilustra-se o momento amortecimento de arfagem que é descrito matematicamente por:

$$M_{M_{q+\dot{\alpha}}} = \frac{1}{2}\rho VSd^2 \left(\mathbf{x} \times \frac{d\mathbf{x}}{dt}\right) C_{M_q} + \frac{1}{2}\rho VSd^2 C_{M_{\dot{\alpha}}} \left[\left(\mathbf{x} \times \frac{d\mathbf{x}}{dt}\right) - \left(\mathbf{x} \times \frac{d\mathbf{l}}{dt}\right) \right]$$
(3.31)

ou

$$M_{M_{q+\dot{\alpha}}} = \frac{1}{2}\rho V^2 Sd\left[\left(\frac{q_t d}{V}\right)C_{M_q} + \left(\frac{\dot{\alpha}_t d}{V}\right)C_{M_{\dot{\alpha}}}\right]$$
(3.32)

Simplificando as Equações (3.31) e (3.32), tem-se:

$$M_{M_{q+\dot{\alpha}}} = \frac{1}{2}\rho VSd^2(C_{M_q} + C_{M_{\dot{\alpha}}})\left(\mathbf{x} \times \frac{d\mathbf{x}}{dt}\right)$$
(3.33)

ou

$$M_{M_{q+\dot{\alpha}}} = \frac{1}{2}\rho V^2 Sd\left(\frac{q_t d}{V}\right) \left[C_{M_q} + C_{M_{\dot{\alpha}}}\right]$$
(3.34)

(3.30)

3.4 PROPELENTE TIPO " COMPOSITE " PARA FOGUETES

Com a finalidade de proporcionar maior detalhamente quanto ao funcionamento do foguete SS-09 TS, buscou-se implementar no presente projeto um breve estudo sobre o propelente "composite", visto que o mesmo é utilizado no foguete em estudo.

Propelentes tipo "composite" são obtidos pela mistura íntima de um combustível e de um oxidante quimicamente distintos (MEYER; HOMBURG; KöHLER, 2007).

O oxidante é normalmente um sal mineral oxigenado, finamente dividido e disperso em um combustível que serve ao mesmo tempo de aglutinante. Pode-se acrescentar ao oxidante e ao combustível substâncias químicas destinadas a facilitar a fabricação e melhorar as propriedades mecânicas e balísticas do propelente.

3.4.1 SUBSTÂNCIAS OXIDANTES

Os oxidantes mais utilizados na fabricação das "composites" são (MEYER; HOM-BURG; KöHLER, 2007):

- a) $NaClO_4$ 52% de teor de oxigênio,
- b) $NaNO_3$ 47% de teor de oxigênio,
- c) $KClO_4$ 46% de teor de oxigênio,
- d) KNO_3 39,5% de teor de oxigênio,
- e) NH_4ClO_4 25,2% de teor de oxigênio e
- f) NH_4NO_3 20% de teor de oxigênio

Os percloratos apresentam o inconveniente de produzirem HCl, o que torna os gases da combustão muito corrosivos porém, são mais ricos em oxigênio do que os nitratos, permitindo a obtenção de propelente mais energéticos.

A combustão dos sais de sódio e de potássio dão origem a produtos sólidos (NaCl, KCl) e provocam fumaças esbranquiçadas. Os percloratos de sódio e amônio são relativamente pouco higroscópicos e permitem a preparação de propelentes com melhor resistência a umidade (MEYER; HOMBURG; KöHLER, 2007).

O oxidante mais frequentemente utilizado é o perclorato de amônio. O nitrato de amônio apesar de produzir gases de combustão relativamente pouco tóxicos, pouco corrosivos e sem fumaça, apresenta um teor de oxigênio relativamente baixo e é muito higroscópico (MEYER; HOMBURG; KöHLER, 2007).

3.4.2 SUBSTÂNCIAS COMBUSTÍVEIS

MEYER; HOMBURG; KöHLER (2007) explicam que existe um grande número de substâncias suscetíveis de serem utilizadas como combustíveis e aglutinantes. A escolha é orientada pelas propriedades físicas, químicas e mecânicas exigidas pelo propelente, além da viabilidade tecnológica e econômica.

Um bom aglutinante deve manter a integridade geométrica do grão do propelente quando esse é submetido a condições tais como:

a) temperaturas extremas (de 80 °C a -60 °C);

b) tensões resultantes de ciclos de temperaturas e;

c) tensões resultantes da pressurização no corpo do foguete.

É também desejável que o combustível tenha uma temperatura de auto-ignição elevada, seja estável a impactos mecânicos (caso seja um polímero energético) e não seja tóxico.

Conforme sua natureza química os aglutinantes podem ser hidrocarbonetos de alto peso molecular como o alcatrão, o asfalto e as borrachas naturais e sintéticas, ou plásticos sintéticos como poliéteres, fenolatos, poliuretanos, entre outros.

Os combustíveis mais utilizados são:

a) cloreto de polivinila (PVC) - termoplástico;

b) poliestireno - termoplástico;

c) polibutadieno - elastômero;

d) polibutadieno-estireno - elastômero;

e) resinas de polisulfetos - elastômero;

f) poliuretanos - termoplástico;

g) polietileno - termorrígido;

h) poliéster - termorrígido;

i) poliacrilatos - termoplástico e

j) polímeros energéticos.

O propelente utilizado pela Força Aérea no veículo lançador de satélite (VLS) é o polibutadieno líquido hidroxilado (PBLH), representado molecularmente na Figura 19:

$$OH- \begin{bmatrix} -CH_2 - C = C - CH_2 - \end{bmatrix}_n^- OH$$

H H

Figura 19 – Estrutura molecular do polibutadieno líquido hidroxilado.

3.4.3 ADITIVOS MECÂNICOS

Podem ser divididos basicamente em agentes umectantes, plastificantes e endurecedores.

Agente umectantes são substâncias que facilitam o envolvimento do cristal do oxidante mineral pelo aglutinante (lecitina).

Plastificantes são substâncias que melhoram as propriedades mecânicas do propelente dando mais flexibilidade ao aglutinante, pois aumentam suas propriedades elásticas (ésteres de álcoois de alto peso molecular).

Endurecedores são substâncias que reforçam as substâncias plásticas de base (carbon-black).

3.4.4 ADITIVOS BALÍSTICOS

Podem ser divididos geralmente em catalisadores de combustão ou energizantes.

Catalisadores de combustão são substâncias que controlam a velocidade de queima do propelente.

Energizantes são substâncias utilizadas para aumentar as propriedades energéticas do propelente, podendo geralmente são ser metais, como Al ou Mg, ou auto-explosivos como RDX ou HMX em forma de pó.

Na Figura 20, pode-se entender melhor as etapas de fabricação do propelente tipo "composite" para foguetes:

Figura 20 – Fluxograma com as etapas de fabricação do propelente tipo "composite" (MARTHO, 2020).

4 MODELAGEM NUMÉRICA

Neste capítulo buscou-se descrever o foguete SS-09 TS com maior detalhamento baseado no manual utilizado pelo EB, abordando cabeça de guerra, tubo motor e tubeira com empenas.

Além disso, buscou-se apresentar a modelagem tridimensional do foguete realizada por meio do software *solidworks* com base nos dados obtidos. Buscando-se, dessa forma, representar o desenho técnico obtido do foguete que será empregado no software *PRODAS* para análise dos coeficientes aerodinâmicos e trajetória do mesmo.

4.1 DESCRIÇÃO DO FOGUETE SS-09 TS

De acordo com o manual do fabricante, o foguete SS 09 TS é um foguete de treinamento solo solo composto de um motor foguete de propelente sólido com empenas envolventes, uma cabeça de guerra com marcação refletora/sinalizadora AVC 70 RS e uma espoleta AVE 70 M9-B, utilizado somente para fins de treinamento.

O fabricante ressalta que o foguete SS-09 TS é equipado com um conjunto refletor localizado na parte traseira da cabeça de guerra, de modo que ele possa ser rastreado pela Unidade de Controle de Fogo (UCF). Possuindo na parte dianteira da cabeça de guerra os itens designados para sinalizar o ponto de impacto no terreno.

Pode-se dividir o foguete analisado basicamente em três partes, conforme Figura 21:

- a) Cabeça de guerra;
- b) Tubo motor;
- c) Tubeira com empenas.

4.1.1 CABEÇA DE GUERRA AVC 70 RS

A cabeça de guerra AVC 70 RS é composta basicamente por três partes, conforme Figura 22:

a) Espoleta AVE 70 M9-B;

b) Ogiva;

c) Conjunto refletor angular.

Dentre as partes já mencionadas para composição da cabeça de guerra AV 70 RS, há ainda a divisão das mesmas em subpartes, conforme apresentado na Figura 23:

Figura 21 – Constituição do Foguete SS-09 TS (EB70-MT-11.000).

Figura 22 – Constituição da cabeça de guerra do foguete SS-09 TS (EB70-MT-11.000).

Onde:

- 1 Composto explosivo;
- 2 Disco de vedação;
- 3 Cavidade da espoleta;
- 4 Composto de sinalização;
- 5 Ogiva;
- 6 Radome;
- 7 Fixação do motor foguete;
- 8 Conjunto do refletor angular.

Figura 23 – Visão seccionada da cabeça de guerra do foguete SS-09 TS (EB70-MT-11.000).

4.1.1.1 ESPOLETA AVE 70 M9-B

De acordo com o manual EB70-MT-11.000, a espoleta AVE 70 M9-B é projetada para funcionar de modo instantâneo, juntamente com o impacto no alvo. Todos os componentes do mecanismo da espoleta são montados dentro de um corpo em forma de cone (usinado em alumínio) com uma rosca externa para fixar à extremidade dianteira da cabeça de guerra. Na Figura 24, é possível verificar a espoleta com todos os componentes presentes na mesma.

Onde:

- 1 Esfera de retenção;
- 2 Anel de retenção;
- 3 Esfera segurança de chanfro;
- 4 Percutor;
- 5 Cápsula de ignição;
- 6 Iniciador do reforçador;
- 7 Reforçador (Booster).

Com o intuito de propiciar maior segurança, destaca-se que a espoleta possui as seguintes características:

• Segurança da armazenagem;

Figura 24 – Visão seccionada da espoleta detonadora de impacto AVE-70 M9-B (EB70-MT-11.000).

- Segurança do transporte e manuseio; e
- Segurança de boca.

A segurança de armazenagem existe devido ao projeto do mecanismo de armação mecânico e também pelo explosivo composto de explosivos militares de alta segurança.

Para o transporte e manuseio, a segurança é fornecida por duas esferas de aço de retenção que travam a cápsula de ignição fora do alcance do pino percutor, quando submetida a acelerações de transporte e manuseio.

Já a segurança de boca é fornecida por duas outras esferas de aço, montadas em frente à capsula iniciadora, bloqueando seu contato com o percutor, mesmo quando o movimento da cápsula iniciadora é liberado por inércia da aceleração do foguete. Dessa forma, a espoleta arma-se, portanto, somente após o final da queima do foguete.

4.1.1.2 OGIVA

A ogiva fica localizada na extremidade dianteira do conjunto refletor e contém uma carga composta de explosivo e pó sinalizador, preparada para produzir um efeito de demarcação no alvo após a detonação da espoleta, conforme pode ser verificado na Figura 22.

4.1.1.3 CONJUNTO REFLETOR ANGULAR

O conjunto refletor angular possui uma peça de aço refletora especial encaixada dentro do radome, que é um invólucro tubular para o conjunto refletor, possibilitando o formato aerodinâmico da cabeça de guerra, feito com a finalidade de permitir que o sinal do radar passe em ambas as direções, com uma perda mínima.

4.1.2 TUBO-MOTOR

O turbo-motor é um cilindro de aço, sem costura e de material com alta qualidade que na sua parte central contém o grão propelente e o inibidor, tendo na sua parte dianteira e traseira, respectivamente, o espaço necessário para o acoplamento do corpo da cabeça de guerra e o conjunto tubeira com empenas.

Vale ressaltar que a parte dianteira possui dupla função, isto é, isola a cabeça de guerra do propelente e compõe o elemento de fixação da cabeça de guerra através de uma rosca trapezoidal.

4.1.3 TUBEIRA COM EMPENAS

A tubeira com empenas é composta basicamente por quatro componentes:

- Invólucro;
- Tubeira;
- Empenas;
- Ignitor.

O invólucro é uma peça moldada de aço usinado, roscada externamente, para ser fixada à extremidade traseira roscada internamente do tubo motor.

A tubeira é a parte que direciona o jato de gás e usa a expansão deste em um cone de saída para aumentar o impulso total. Ela também restringe a saída do gás da câmara de combustão, mantendo, portanto, a pressão dentro do tubo motor em um valor apropriado para a queima do propelente. A tubeira contém o inserto de grafite e o divergente.

As empenas são peças feitas de liga de alumínio, articuladas através dos respectivos eixos fixados ao invólucro cilíndrico da tubeira. Quando essas empenas estão na posição dobrada ou dentro do tubo lançador, envolvem a tubeira e restringem-se ao diâmetro externo do foguete. A abertura dessas empenas na posição de voo é obtida através da ação da mola, assim que o foguete deixa o tubo lançador, conforme Figura 25.

O grão propelente existente no motor-foguete é sólido, tipo composite, com uma perfuração em forma de estrela, de queima interna, sendo segundo o fabricante projetado para assegurar um empuxo uniforme durante o voo propulsado.

Figura 25 – Conjunto de tubeiras com empenas do foguete SS-09 TS (EB70-MT-11.000).

O ignitor é o responsável por aquecer a superfície do grão propelente à temperatura de ignição. O mesmo fica localizado dentro da garganta da tubeira, contendo a carga da ignição e iniciador elétrico. O cordão umbilical, que se estende da garganta através do centro da membrana traseira do ignitor do divergente e através do rotor, termina em um conector.

4.2 MODELAGEM TRIDIMENSIONAL DO FOGUETE SS-09 TS

A fim de detalhar melhor cada componente que compõe o foguete SS-09 TS, torna-se essencial obter a lista de parâmetros associados ao mesmo para que posteriormente possa ser comparado com os resultados obtidos no software *PRODAS*.

Esta seção tratará dos parâmetros de interesse para a simulação e os respectivos valores obtidos. Na Figura 26 é possível visualizar uma imagem do foguete SS-09 TS no qual foram obtidos os parâmetros abordados a seguir.

4.3 PARÂMETROS DO FOGUETE

Os parâmetros físicos do foguete SS-09 TS, apresentados na Tabela 1, foram fornecidos no *datasheet* do própio fabricante (AVIBRAS).

Com os dados apresentados pelo fabricante iniciou-se a modelagem tridimensional do foguete no software *Solidworks*, como pode ser observado na Figura 27.

Figura 26 – Foguete SS-09 TS (Centro de Catalogação de Defesa - CECADE).

Parâmetro	Valor
Peso total (com anel de retenção)	$11,9 \ kgf$
Calibre nominal	70 mm
Diâmetro máximo externo (turgências)	$71,\!12\ mm$
Comprimento total (com anel de retenção)	$1366\ mm$
Tipo de espoleta	AVE - 70M9 - B
Carga de sinalização	Óxido de titânio
Alcance mínimo (nível do mar)	$6,3 \; km$
Alcance máximo (nível do mar)	$10,6 \ km$
Comprimento da cabeça de guerra (com espoleta M9-B)	624 mm
Peso da cabeça de guerra (com espoleta M9-B)	$3,\!84\ kgf$
Velocidade máxima	$811,\!64 m/s$
Tempo até atingir velocidade máxima	$1,\!17\ s$
Altitude máxima	$3,\!22km$
Alcance máximo	$11,01 \ km$
Tempo até atingir range máximo	$50,\!08\ s$

Tabela 1 – Parâmetros do foguete SS-09 TS.

Para parte interna, foi adotado um propelente sólido de seção hexagonal com objetivo de assegurar uma combustão uniforme durante o voo propelido, isto é, variação da área de queima do propelente constante, conforme pode ser visualizado na Figura 28.

Na Figura 29, é possível verificar uma estimativa do desenho técnico do foguete SS-09 TS que será implementado posteriormente no software *PRODAS*. Vale ressaltar que com o intuito de resguardar o projeto já em uso pelo Exército Brasileiro (EB) e por motivos de segurança e confidencialidade, optou-se por não expor em maiores detalhes as cotas empregadas no desenho técnico apresentado.

Contudo, vale destacar que ao final do projeto será disponibilizado um anexo com todas as medidas utilizadas na simulação no software *PRODAS*, assim como os resultados obtidos e a comparação com os dados de tiro do foguete estudado.

Figura 27 – Modelagem tridimensional do foguete SS-09 TS.

Figura 28 – Vista do propelente em modelagem tridimensional do foguete SS-09 TS.

Figura 29 – Desenho técnico do foguete SS-09 TS.

5 COEFICIENTES AERODINÂMICOS

Neste capítulo buscou-se realizar o levantamento dos coeficientes aerodinâmicos do foguete SS-09 TS através do *software PRODAS*.

Como não haviam dados suficientes fornecidos pelo fabricante para prosseguir com a modelagem do mesmo através de medidas exigidas pelo software, tonou-se necessário estimar alguns parâmetros do foguete SS-09 TS através do foguete *Hydra - 70*, cujas referências estão disponíveis no banco de dados do *software* empregado.

Dessa forma, foi possível determinar os dados aerodinâmicos referentes ao foguete em estudo conforme será apresentado adiante.

5.1 FOGUETES 70 MM

Segundo PARSCH (2009), os foguetes de 70 mm foram desenvolvidos no final da década de 1940 pela *Naval Ordnance Test Station* (NOTS), com o objetivo de serem utilizados como poderosos suplementos e/ou substitutos para armas tanto em aplicações ar-ar, quanto ar-terra.

Nesse escopo, foi desenvolvido pela NOTS o *Folding-Fin Aircraft Rocket* (FFAR) de 70 mm para ser uma arma ar-ar com objetivo de ser utilizado por interceptadores contra bombardeiros pesados. O modelo original do foguete era o MK4 estabilizado com quatro aletas do tipo *flip-out* e o mesmo contava com uma ogiva HE de 2,7 kg, 1,2 m de comprimento e 8,4 kg de peso.

Figura 30 – Mighty Mouse MK4 (PARSCH, 2009)

Na década de 1950, o FFAR de 70 mm foi amplamente utilizado como o foguete ar-ar *Mighty Mouse* pela *United States Air Force* (USAF). Contudo, como o foguete não era tão preciso tratou-se de adaptá-lo para uso ar-terra.

Mais tarde, o foguete foi aperfeiçoado pelo Exército e Corpo de Fuzileiros Navais dos EUA para utilização em helicópteros. Com o intuito de adquirir um melhor desempenho ao partir dessas plataformas foi desenvolvido o motor MK 40, possibilitando maior rotação e precisão.

5.1.1 HYDRA - 70

Atualmente o Exército Americano vem utilizando o sistema de foguetes Hydra 70 com motor MK 66, sendo uma versão substituta do MK 4 e MK 40.

O MK 66 é mais longo que o MK 4/40, usa um propulsor sem fumaça melhorado e tem uma montagem completamente nova de tubeira e tipo de aleta. As três aletas são do tipo *wrap-around* e se encaixam em torno da circunferência da tubeira do foguete. Possui uma taxa de impulso e rotação maior do que o MK 4/40, aumentando o alcance efetivo e a precisão.

Existem inúmeras ogivas das quais foram originalmente desenvolvidas para o MK 4/40 FFARs e estão disponíveis para o foguete MK 66 *Hydra 70*, conforme pode ser observado na Figura 31.

Figura 31 – Sistema Hydra 70 MK 66 com diversos tipos de ogiva (General Dynamics)

Na Tabela 2 é possível verificar alguns parâmetros de relevância fornecidos pelo fabricante do Hydra - 70 referentes ao motor MK 66 empregado no mesmo.

Parâmetro	Valor
Peso (somente motor)	$6,2 \ kgf$
Peso total (dependendo da ogiva empregada)	$11,33 \ kgf$
Comprimento (somente motor)	$1059 \ mm$
Diâmetro	$70 \ mm$
Alcance útil	$8,00 \ km$
Alcance máximo	$10,50 \ km$
Velocidade máxima	739 m/s
Velocidade de saída do lançador	45 m/s

Tabela 2 – Parâmetros do foguete Hydra 70

5.2 RESULTADOS AERODINÂMICOS DO FOGUETE SS-09 TS

Com o intuito de prosseguir com a modelagem do foguete SS-09 TS, buscou-se adaptar o motor MK 66 do foguete Hydra 70 (no qual os dados puderam ser obtidos por meio do datasheet do fabricante e pelo banco de dados do software PRODAS) para o foguete SS - 09 TS, dentro dos paramêtros de manual previsto para o foguete em análise.

Para o levantamento dos coeficientes aerodinâmicos, o *PRODAS* fornece opções para diversos coeficientes aerodinâmicos, assim como para os coeficientes do efeito Magnus. Para tal, deve-se selecionar no menu principal a opção *Analysis*, selecionar o menu *Aerodynamics* e optar pela opção *Aero Predictions*, conforme Figura 52 presente no Apêndice A.

O programa exibe uma nova página, já com os dados obtidos do projétil criado anteriormente, conforme ilustrado na Figura 53 presente no Apêndice A. Na aba inicial, *Geometry Inputs*, são realizadas análises da geometria do projétil, tais como comprimento do projétil em voo, comprimento da ogiva, raio da ogiva, diâmetro *Meplat*¹, diâmetro de referência, entre outros.

Ao selecionar o comando *Calc New Aeros* é gerado na aba *Aero Model* do software o modelo aerodinâmico que será analisado, conforme apresentado na Figura 54 presente no Apêndice A.

O *PRODAS* fornece também através da aba *Tabular Results* os coeficientes aerodinâmicos levantados para o modelo em estudo, conforme pode ser verificado na Figura 55 presente no Apêndice A.

¹ A palavra é de origem francesa "méplat"e pode ser entendida como "superfície plana de um cilindro". O mesmo fica localizado na parte dianteira da munição, tendo influência relevante no levantamento dos coeficientes aerodinâmicos.

Um projétil com meplat plano e largo tem muito mais potencial para transferir sua energia imediatamente sobre o impacto do que um projétil pontiagudo. (FOSTER, 2016)

Além disso, através da aba *Formatted Results* o programa possibilita ainda a reunião dos dados referentes às abas anteriores. Dentre os dados apresentados nesta aba, pode-se citar:

- Parâmetros básicos do projeto;
- Coeficientes aerodinâmicos, conforme Figura 32;
- Coeficientes aerodinâmicos dos componentes do conjunto de aletas;

• Tabela de conversão dos coeficientes da força de arrasto e sustentação para os coeficientes da força axial e normal (Figura 33), visto que o *software* trabalha com eixos paralelos e perpendiculares ao eixo de simetria do foguete, ao invés de eixos paralelos e perpendiculares à trajetória, como já mencionado no item 3.3.4.

```
SS_09_TS_Finish_Cap_Crespo.pr3 - 0
07/12/2022 16:10
Finner2000 Version 3.0.0
```

Aerodynamic Coefficients (with form factors applied) for Baseline Stage 1 Fin Set(s) Included 1: Yes 2: No 3: No

Mach	СХО	CX2	CX4	CNa	CNa3	CPN	CYpa	CXfore	CXbase	CNq
1.000	0.759	8.11	0.0	13.04	0.0	14.46	0.00	0.544	0.214	367.5
1.025	0.796	8.86	0.0	13.07	0.0	14.70	0.00	0.583	0.213	377.0
1.050	0.833	9.61	0.0	13.10	0.0	14.93	0.00	0.622	0.211	386.6
1.100	0.814	10.83	0.0	13.44	0.0	15.12	0.00	0.603	0.211	406.3
1.200	0.773	12.76	0.0	12.70	0.0	14.90	0.00	0.566	0.207	378.8
1.350	0.745	12.13	0.0	11.94	0.0	14.54	0.00	0.544	0.201	346.5
1.500	0.714	11.48	0.0	11.46	0.0	14.17	0.00	0.520	0.194	322.6
1.750	0.671	10.85	0.0	11.33	0.0	13.91	0.00	0.490	0.181	312.9
2.000	0.631	10.19	0.0	9.22	0.0	12.61	0.00	0.465	0.166	226.0
2.250	0.594	9.84	0.0	8.70	0.0	12.01	0.00	0.442	0.152	201.7
2.500	0.557	9.48	0.0	8.17	0.0	11.34	0.00	0.420	0.137	177.3
3.000	0.485	8.19	0.0	7.37	0.0	10.36	0.00	0.374	0.111	145.6
3.500	0.460	7.60	0.0	6.77	0.0	9.72	0.00	0.368	0.092	123.7
4.000	0.435	7.02	0.0	6.16	0.0	8.97	0.00	0.362	0.073	101.8
Mome	nts at Ba	aseline (CG = 8	.98 Calib	ers from	n the Nos	e			
Mach	Cma	Cma3	Cma5	Cmq	Cmq2	Cnpa@1	Cnpa@3	Cnpa@5	Clp	Cld
1.000	-71.5	0.0	0.0	-2243.9	0.0	0.0	0.0	0.	-4.8	0.057

Mach	Cma	Cma3	Cma5	Cmq	Cmq2	Cnpa@1	Cnpa@3	Cnpa@5	Clp	Cld
1.000	-71.5	0.0	0.0	-2243.9	0.0	0.0	0.0	0.	-4.8	0.057
1.025	-74.7	0.0	0.0	-2299.5	0.0	0.0	0.0	0.	-4.8	0.058
1.050	-78.0	0.0	0.0	-2355.0	0.0	0.0	0.0	0.	-4.9	0.059
1.100	-82.5	0.0	0.0	-2491.0	0.0	0.0	0.0	0.	-5.0	0.061
1.200	-75.1	0.0	0.0	-2396.2	0.0	0.0	0.0	0.	-4.7	0.056
1.350	-66.3	0.0	0.0	-2288.7	0.0	0.0	0.0	0.	-4.2	0.051
1.500	-59.4	0.0	0.0	-2223.6	0.0	0.0	0.0	0.	-3.9	0.047
1.750	-55.9	0.0	0.0	-2206.6	0.0	0.0	0.0	0.	-3.8	0.046
2.000	-33.4	0.0	0.0	-1838.2	0.0	0.0	0.0	0.	-2.8	0.033
2.250	-26.4	0.0	0.0	-1740.0	0.0	0.0	0.0	0.	-2.5	0.030
2.500	-19.3	0.0	0.0	-1641.8	0.0	0.0	0.0	0.	-2.2	0.026
3.000	-10.1	0.0	0.0	-1497.9	0.0	0.0	0.0	0.	-1.8	0.021
3.500	-5.0	0.0	0.0	-1384.4	0.0	0.0	0.0	0.	-1.6	0.018
4.000	0.1	0.0	0.0	-1270.8	0.0	0.0	0.0	0.	-1.3	0.015

Figura 32 – Aba Formatted Results - Coeficientes Aerodinâmicos

Com a finalidade de possibilitar maior compreensão quanto aos coeficientes apresentados na Figura 32, buscou-se indicar a nomenclatura dos mesmos.

Onde:

CX0 - Coeficiente de força axial de guinada zero;

CNa - Coeficiente da força Normal;

CPN - Centro de pressão da força normal;

CYpa - Coeficiente de força Magnus;

CXf - Coeficiente de força axial da parte dianteira do corpo;

CXb - Coeficiente de força axial da parte traseira do corpo;

CNq - Coeficiente de força de amortecimento de arfagem;

Cma - Coeficiente de momento de capotamento;

Cmq - Coeficiente do momento de amortecimento de arfagem;

Clp - Coeficiente do momento de amortecimento da rotação;

Cld - Coeficiente do momento de rolagem.

Vale destacar que o arquivo gerado pelo *PRODAS* na aba *Formatted Results* com todos os dados fornecidos e empregados para o levantamento dos coeficientes aerodinâmicos estão disponíveis no Anexo A do presente projeto.

> SS_09_TS_Finish_Cap_Crespo.pr3 - 0 07/12/2022 16:10 Finner2000 Version 3.0.0

(CV A	Expres:	sed in Cl	D and CL	Conventi	on	200)		
Aerodyna	mic Coef	ficients	(with f	orm facto	onvenie	ied) for	Baseline	Stage 1
Fin S	et(s) In	cluded	1: Yes	2: No 3	: No	100, 101	buschine	20080 1
Mach	CDo	CD2	CLa	CLa3	СХо	CX2	CNa	CNa3
1.00	0.759	21.16	12.29	-8.11	0.759	8.11	13.04	0.00
1.02	0.796	21.94	12.28	-8.86	0.796	8.86	13.07	0.00
1.05	0.833	22.71	12.27	-9.61	0.833	9.61	13.10	0.00
1.10	0.814	24.27	12.62	-10.83	0.814	10.83	13.44	0.00
1.20	0.773	25.46	11.93	-12.76	0.773	12.76	12.70	0.00
1.35	0.745	24.06	11.19	-12.13	0.745	12.13	11.94	0.00
1.50	0.714	22.93	10.74	-11.48	0.714	11.48	11.46	0.00
1.75	0.671	22.18	10.66	-10.85	0.671	10.85	11.33	0.00
2.00	0.631	19.41	8.59	-10.19	0.631	10.19	9.22	0.00
2.25	0.594	18.53	8.10	-9.84	0.594	9.84	8.70	0.00
2.50	0.557	17.65	7.61	-9.48	0.557	9.48	8.17	0.00
3.00	0.485	15.57	6.89	-8.19	0.485	8.19	7.37	0.00
3.50	0.460	14.37	6.31	-7.60	0.460	7.60	6.77	0.00
4.00	0.435	13.18	5.73	-7.02	0.435	7.02	6.16	0.00

Figura 33 – Aba Formatted Results - Conversão coeficientes

Já na aba *Plotted Results*, o *software* possibilita que todos os dados aerodinâmicos já obtidos possam ser plotados em função do número de Mach, permitindo-se, dessa forma, que o usuário tenha uma melhor perspectiva dos dados levantados. Nas figuras 34, 35, 36 e 37, pode-se visualizar o padrão de quatro curvas exibidas pelo programa (C_{X0} versus Mach, C_{Na} versus Mach, CPN versus Mach e C_{xf} versus Mach, respectivamente).

Vale destacar que o arquivo gerado pelo *PRODAS* na aba *Plotted Results* com todos os gráficos fornecidos e empregados para o levantamento dos coeficientes aerodinâmicos estão disponíveis no Anexo B do presente projeto.

Cabe ressaltar que como os dados aerodinâmicos não foram disponibilizados pelo fabricante, uma opção para uma análise mais aprofundada dos resultados fornecidos pelo programa, seria a implantação no *Ansys Fluent*, não sendo o foco do presente estudo.

Figura 34 – Aba Plotted Results - C_{X0} x Mach

Figura 35 – Aba Plotted Results - C_{Na} x Mach.

Figura 36 – Aba Plotted Results - CPN x Mach.

Figura 37 – Aba $Plotted\ Results$ - $C_{xf} \ge Mach.$

54

6 TRAJETÓRIA

Neste capítulo buscou-se realizar o cálculo da trajetória do foguete SS-09 TS através do *software PRODAS*.

Com a finalidade de proceder uma avaliação mais detalhada, utilizou-se para o cálculo da trajetória tanto o modelo massa-ponto modificado (4-DOF), quanto o modelo com seis graus de liberdade (6-DOF).

Após a obtenção dos dados relativos a trajetória do foguete em estudo, foi possível comparar os resultados alcançados com o estabelecido pelo fabricante através da tabela de tiro.

6.1 RESULTADOS DA TRAJETÓRIA DO FOGUETE SS-09 TS PARA 4-DOF

Para o levantamento da trajetória com 4-DOF, o *software* simula a trajetória considerando os deslocamentos $(x, y \in z)$ e a rotação do foguete.

Com a finalidade de analisar a trajetória com 4-DOF, deve-se selecionar no menu principal a opção *Analysis*, selecionar o menu *Trajectories* e optar pela opção *Fixed Plane* - 4D, conforme Figura 56 apresentada no Apêndice B.

O programa exibe uma nova página que permite ao usuário exercer maior controle sobre a simulação, conforme ilustrado na Figura 57 apresentada no Apêndice B. Para tal, pode-se inserir tempo de parada da simulação e parâmetros de alcance e altitude.

Além disso, é possível selecionar qual tipo de plataforma o mesmo está sendo lançado. No presente estudo, foi adotado um tempo de simulação de 90s com alcance variando até 12000m, visto que o alcance máximo do foguete analisado é de 11010m.

Na aba *Initial Conditions*, conforme pode ser observado na Figura 58 apresentada no Apêndice B, o *software* permite ao usuário configurar velocidade de boca, posição inicial (eixos x, y e z), quadrante de elevação, condições meteorológicas, entre outros.

Com o intuito de prosseguir com a análise do foguete, buscou-se por tentativa e erro chegar a uma velocidade de boca de modo que os parâmetros da trajetória obtidos no *PRODAS* fossem condizentes com os dados apresentados no manual. Tal medida tornou-se necessária, uma vez que essa informação não era fornecida pelo fabricante. Além disso, buscou-se adotar a posição inicial do eixo z como 5m, sendo considerada a altura média da viatura ASTROS quando em posição de tiro.

Através da aba *Projectile Parameters*, o *PRODAS* fornece propriedades da massa inicial do foguete em estudo antes da combustão completa e após a combustão completa, conforme pode-se verificar na Figura 59 apresentada no Apêndice B.

Após a inserção dos parâmetros mencionados nos parágrafos anteriores, o usuário deve selecionar o comando *Run 4DOF Trajectory* apresentado na aba *Setup/Run*. Dessa forma, o *software* gera através da aba *Tabular Results* os dados da trajetória do foguete em estudo com 4-DOF, conforme ilustrado na Figura 60 apresentada no Apêndice B.

Além disso, pela aba *Formatted Results* o programa possibilita a reunião dos dados referentes às abas anteriores. Dentre os dados apresentados nesta aba, pode-se citar: velocidade, ângulo de trajetória, altitude, ângulo de ataque, entre outros.

Já na aba *Plotted Results*, o *software* permite que todos os dados já obtidos relativos a trajetória possam ser plotados em função do tempo, permitindo-se, dessa forma, que o usuário tenha uma melhor perspectiva dos dados levantados. Na Figura 38 e 39, pode-se visualizar o padrão de duas curvas exibidas pelo programa: Tempo *versus* Deslocamento(m) e Tempo(s) *versus* Velocidade(m/s), respectivamente.

Figura 38 – Tempo x Deslocamento

Percebe-se na Figura 39 que a velocidade máxima obtida no gráfico é condizente com o valor de manual exposto pelo fabricante, cerca de 811 m/s, conforme exposto na Tabela 1. Além disso, constata-se que o tempo até atingir a velocidade máxima apresentada pelo *software*, cerca de 1 s, está em concordância com o apresentado na Tabela 1.

Posteriormente, será abordado o levantamento dos dados relativos a tabela de tiro do foguete em estudo através do *PRODAS*, no qual será possível verificar entre diversos

Figura 39 – Tempo x Velocidade

fatores, o alcance para cada intervalo de tempo, assim como a velocidade até aquele instante.

6.2 TABELA DE TIRO DO FOGUETE SS-09 TS PARA 4-DOF

Com o levantamento dos resultados provenientes da trajetória, pode-se obter a *Firing Table* (Tabela de Tiro) com 4-DOF para o foguete em análise. Para isso, deve-se selecionar no menu principal a opção *Analysis*, selecionar o menu *Firing Tables* e optar pela opção *Ballistic Tables*, conforme Figura 61 presente no Apêndice C.

O programa exibe uma nova página que permite ao usuário selecionar o tipo de trajetória que será feita a simulação (4-DOF ou 6-DOF), peso total, condições atmosféricas e, ainda, selecionar os fatores de forma dos coeficientes aerodinâmicos, conforme ilustrado na Figura 62 presente no Apêndice C.

Ao selecionar o comando *Run Analysis* o *PRODAS* fornece através da aba *Results Table* o tempo de voo, velocidade e energia cinética do foguete para cada alcance apresentado no modelo em estudo, conforme pode ser verificado na Figura 63 presente no Apêndice C.

Através dos dados fornecidos pelo *software* permite-se gerar a tabela de tiro do foguete em estudo com 4-DOF, conforme Figura 40.

Vale destacar que o arquivo gerado pelo *PRODAS* na aba *Formatted Output* com todos os dados fornecidos para o levantamento da tabela de tiro estão disponíveis no Anexo C do presente projeto.

				**** B	allisti	c Match T	able Outp	ut *****			
	Remaining		Angle	e of	Ang	le of	Kinetic			Vertex	Vertex
Range	Velocity	Time	Eleva	ation	De	scent	Energy	Drop	Drift	Height	Range
m	m/sec	sec	deg.	G-mils	deg.	G-mils	kilojo	G-mils	G-mils	m	m
0.	95.6	0.000	0.00	0.00	0.00	0.00	54.4	0.000	0.000	0.0	0.0
100.	364.9	0.436	0.87	15.49	0.37	6.58	671.6	15.494	-0.005	0.2	40.4
200.	536.5	0.656	1.13	20.09	0.39	6.86	1320.2	20.091	-0.008	0.5	76.8
300.	686.6	0.816	1.28	22.83	0.38	6.76	2006.0	22.832	-0.009	0.7	111.0
400.	812.2	0.960	1.40	24.93	0.37	6.56	2610.2	24.927	-0.011	1.0	148.0
500.	802.0	1.076	1.48	26.30	0.37	6.63	2491.1	26.298	-0.012	1.2	179.6
600.	788.6	1.196	1.55	27.49	0.39	6.95	2408.7	27.487	-0.013	1.4	213.6
700.	774.0	1.331	1.61	28.66	0.42	7.50	2320.2	28.664	-0.014	1.7	255.1
800.	759.4	1.469	1.67	29.77	0.46	8.19	2233.8	29.767	-0.015	2.0	303.5
900.	746.7	1.594	1.73	30.71	0.50	8.90	2159.3	30.706	-0.016	2.3	354.3
1000.	732.8	1.733	1.78	31.71	0.55	9.77	2079.7	31.715	-0.017	2.7	419.2
1100.	719.9	1.865	1.84	32.65	0.60	10.66	2007.2	32.652	-0.018	3.1	480.6
1200.	706.4	2.008	1.89	33.64	0.66	11.67	1932.8	33.638	-0.019	3.6	543.7
1300.	693.0	2.153	1.95	34.63	0.72	12.75	1860.3	34.630	-0.020	4.2	605.9
1400.	680.7	2.291	2.00	35.57	0.78	13.83	1794.6	35.566	-0.021	4.7	663.4
1500.	667.7	2.441	2.06	36.57	0.85	15.04	1726.7	36.570	-0.022	5.4	723.8
1600.	654.8	2.594	2.11	37.60	0.92	16.32	1660.6	37.596	-0.023	6.2	784.1
1700.	642.0	2.751	2.17	38.64	1.00	17.69	1596.2	38.644	-0.025	7.0	844.4
1800.	629.3	2.911	2.23	39.71	1.08	19.14	1533.6	39.714	-0.026	7.9	904.6
1900.	618.1	3.057	2.29	40.69	1.15	20.50	1479.6	40.687	-0.027	8.8	958.4
2000.	605.7	3.222	2.35	41.80	1.24	22.09	1421.0	41.796	-0.028	9.9	1018.3
2100.	593.5	3.392	2.42	42.94	1.34	23.78	1364.1	42.936	-0.030	11.1	1078.5
2200.	581.3	3.565	2.48	44.11	1.44	25.56	1308.8	44.107	-0.031	12.4	1138.9
2300.	569.3	3.743	2.55	45.31	1.54	27.44	1255.2	45.310	-0.032	13.7	1199.6
2400.	557.4	3.924	2.62	46.54	1.65	29.41	1203.5	46.543	-0.034	15.2	1260.6
2500.	545.7	4.109	2.69	47.81	1.77	31.50	1153.5	47.808	-0.035	16.8	1321.6
2600.	534.2	4.297	2.76	49.10	1.89	33.68	1105.4	49.104	-0.037	18.6	1382.7
2700.	524.2	4.467	2.83	50.28	2.01	35.71	1064.2	50.282	-0.038	20.2	1437.0
2800.	512.9	4.665	2.91	51.66	2.15	38.14	1019.0	51.655	-0.039	22.2	1499.0
2900.	501.8	4.866	2.99	53.07	2.29	40.69	975.2	53.069	-0.041	24.3	1561.3
3000.	490.8	5.072	3.07	54.52	2.44	43.38	933.1	54.524	-0.043	26.6	1623.8

_P2K575255SS_09_TS_Finish_Cap_Cr - 0 06/29/2022 16:37 BallisticMatch2000 Version 4.1.0

Figura 40 – Extrato da aba Formatted Output

6.3 RESULTADOS DA TRAJETÓRIA DO FOGUETE SS-09 TS PARA 6-DOF

Para o levantamento da trajetória com 6-DOF, o *software* simula a trajetória considerando os deslocamentos (x, y e z), a rotação, o ângulo de ataque e ângulo de yaw do foguete.

Na análise com 6-DOF, o programa apresenta interface semelhante ao caso já apresentado para 4-DOF com pequenas variações, conforme será visto adiante.

Com a finalidade de analisar a trajetória do modelo com 6-DOF, deve-se selecionar no menu principal a opção *Analysis*, selecionar o menu *Trajectories* e optar pela opção *Fixed Plane - 6D*, conforme Figura 64 apresentada no Apêndice D.

O programa exibe uma nova página que permite ao usuário exercer maior controle sobre a simulação, conforme ilustrado na Figura 65 apresentada no Apêndice D. Para tal, pode-se inserir tempo de parada da simulação, intervalo de integração e parâmetros de alcance e altitude. Outra opção contida nessa aba que não consta na mesma aba para 4-DOF é opção de considerar *coriolis*. Na aba Setup/Run é possível, ainda, selecionar qual tipo de plataforma o mesmo está sendo lançado. No presente estudo, foi adotado um tempo de simulação de 90s com alcance variando até 12000m, visto que o alcance máximo do foguete analisado é de 11010m.

Na aba *Initial Conditions*, conforme pode ser observado na Figura 66 apresentada no Apêndice D, o *software* permite ao usuário configurar velocidade de boca, posição inicial (eixos x, y e z), quadrante de elevação, condições meteorológicas, entre outros.

Com o intuito de prosseguir com a análise do foguete, buscou-se por tentativa e erro chegar a uma velocidade de boca de modo que os parâmetros da trajetória obtidos no *PRODAS* fossem condizentes com os dados apresentados no manual. Tal medida tornou-se necessária, uma vez que essa informação não era fornecida pelo fabricante. Além disso, buscou-se adotar a posição inicial do eixo z como 5m, sendo considerada a altura média da viatura ASTROS quando em posição de tiro.

Através da aba *Projectile Parameters*, o *PRODAS* fornece propriedades da massa inicial do foguete em estudo antes da combustão completa e após a combustão completa, conforme pode-se verificar na Figura 67 apresentada no Apêndice D.

Após a inserção dos parâmetros mencionados nos parágrafos anteriores, o usuário deve selecionar o comando *Run 6DOF Trajectory* apresentado na aba *Setup/Run*. Dessa forma, o *software* gera através da aba *Tabular Results* os dados da trajetória do foguete em estudo com 6-DOF, conforme ilustrado na Figura 68 apresentada no Apêndice D.

Além disso, pela aba *Formatted Results* o programa possibilita a reunião dos dados referentes às abas anteriores. Vale ressaltar que para simulação com 6-DOF o *software* fornece além das informações já mencionadas para 4-DOF, informações mais detalhas nas quais podem-se citar:

- Condições iniciais;
- Parâmetros da trajetória; e
- Dados da trajetória de plano fixo com 6-DOF.

Já na aba *Plotted Results*, o *software* permite que todos os dados já obtidos relativos a trajetória possam ser plotados em função do tempo, permitindo-se, dessa forma, que o usuário tenha uma melhor perspectiva dos dados levantados. Na Figura 41 e 42, pode-se visualizar o padrão de duas curvas exibidas pelo programa: Tempo *versus* Deslocamento(m) e Tempo(s) *versus* Velocidade(m/s), respectivamente.

Percebe-se na Figura 42 que a velocidade máxima obtida no gráfico é condizente com o valor já encontrado para 4-DOF e com o dado de manual exposto pelo fabricante, cerca de 811 m/s, conforme exposto na Tabela 1. Além disso, constata-se que o tempo até atingir a velocidade máxima apresentada pelo *software*, cerca de 1 s, está em concordância

Figura 41 – Tempo x Deslocamento

Figura 42 – Tempo x Velocidade

com o apresentado para 4-DOF e com a Tabela 1.

Posteriormente, será abordado o levantamento dos dados relativos a tabela de tiro do foguete em estudo através do *PRODAS*, no qual será possível verificar entre diversos fatores, o alcance para cada intervalo de tempo, assim como a velocidade até aquele instante.

60

6.4 TABELA DE TIRO DO FOGUETE SS-09 TS PARA 6-DOF

Com o levantamento dos resultados provenientes da trajetória, pode-se obter a *Firing Table* (Tabela de Tiro) com 6-DOF para o foguete em análise. Para isso, segue-se o mesmo caminho para o caso já mencionado com 4-DOF. Deve-se selecionar no menu principal a opção *Analysis*, selecionar o menu *Firing Tables* e optar pela opção *Ballistic Tables*, conforme Figura 61 presente no Apêndice C.

O programa exibe uma nova página que permite ao usuário selecionar o tipo de trajetória que será feita a simulação (4-DOF ou 6-DOF), condições atmosféricas, peso total e, ainda, selecionar os fatores de forma dos coeficientes aerodinâmicos, conforme ilustrado na Figura 62 presente no Apêndice C.

Ao selecionar o comando *Run Analysis* o *PRODAS* fornece através da aba *Results Table* o tempo de voo, velocidade e energia cinética do foguete para cada alcance apresentado no modelo em estudo, conforme pode ser verificado na Figura 69 apresentada no Apêndice E.

Através dos dados fornecidos pelo *software* permite-se gerar a tabela de tiro do foguete em estudo com 6-DOF, conforme Figura 43.

Vale destacar que o arquivo gerado pelo *PRODAS* na aba *Formatted Results* com todos os dados fornecidos para o levantamento da tabela de tiro estão disponíveis no Anexo D do presente projeto.

_P2K5752555S_09_TS_Finish_Cap_Cr - 0 06/29/2022 16:41 BallisticMatch2000 Version 4.1.0

	Remaining		Angle	of	Ang	le of	Kinetic			Vertex	Vertex
Range	Velocity	Time	Eleva	tion	De	scent	Energy	Drop	Drift	Height	Range
m	m/sec	sec	deg.	G-mils	deg.	G-mils	kilojo	G-mils	G-mils	m	m
0.	95.6	0.000	0.00	0.00	0.00	0.00	54.4	0.000	0.000	0.0	0.0
100.	363.9	0.434	0.70	12.51	0.35	6.30	668.3	12.507	-0.004	0.2	44.6
200.	542.1	0.663	0.97	17.19	0.38	6.71	1343.8	17.186	-0.006	0.5	77.6
300.	697.9	0.827	1.12	19.93	0.37	6.66	2061.0	19.931	-0.008	0.7	117.0
400.	811.2	0.955	1.22	21.76	0.36	6.49	2610.2	21.761	-0.009	1.0	146.2
500.	802.2	1.072	1.30	23.13	0.37	6.54	2492.3	23.131	-0.010	1.2	180.9
600.	786.8	1.210	1.38	24.47	0.39	6.93	2398.0	24.475	-0.011	1.4	217.7
700.	774.0	1.328	1.43	25.49	0.42	7.42	2320.4	25.495	-0.012	1.7	256.1
800.	759.6	1.465	1.50	26.58	0.46	8.11	2234.6	26.583	-0.013	2.0	302.1
900.	746.5	1.593	1.55	27.54	0.50	8.83	2158.3	27.540	-0.014	2.3	356.0
1000.	732.7	1.731	1.61	28.54	0.55	9.69	2079.2	28.537	-0.015	2.7	419.7
1100.	719.0	1.872	1.66	29.52	0.60	10.63	2002.3	29.523	-0.016	3.1	484.5
1200.	706.1	2.008	1.71	30.46	0.65	11.60	1930.9	30.465	-0.017	3.6	545.1
1300.	692.8	2.153	1.77	31.45	0.71	12.68	1859.0	31.445	-0.018	4.1	606.8
1400.	679.7	2.300	1.82	32.43	0.78	13.82	1789.4	32.433	-0.019	4.8	667.7
1500.	667.0	2.446	1.88	33.41	0.84	15.00	1723.2	33.410	-0.021	5.4	726.5
1600.	654.2	2.599	1.94	34.43	0.92	16.28	1657.5	34.427	-0.022	6.2	786.4
1700.	641.9	2.749	1.99	35.42	0.99	17.59	1596.0	35.424	-0.023	7.0	843.9
1800.	629.4	2.907	2.05	36.47	1.07	19.01	1534.3	36.474	-0.024	7.9	903.2
1900.	617.0	3.068	2.11	37.55	1.15	20.51	1474.3	37.552	-0.025	8.9	962.9
2000.	604.6	3.234	2.17	38.66	1.24	22.10	1416.0	38.657	-0.027	9.9	1022.6
2100.	592.4	3.403	2.24	39.79	1.34	23.78	1359.4	39.789	-0.028	11.1	1082.7
2200.	581.4	3.562	2.30	40.85	1.43	25.41	1309.1	40.854	-0.029	12.3	1137.9
2300.	569.5	3.737	2.36	42.04	1.53	27.26	1256.0	42.039	-0.030	13.6	1198.0
2400.	557.7	3.918	2.43	43.26	1.64	29.21	1204.6	43.259	-0.032	15.1	1258.3
2500.	546.0	4.102	2.50	44.52	1.76	31.28	1154.7	44.515	-0.033	16.7	1319.4
2600.	534.5	4.290	2.58	45.81	1.88	33.46	1106.5	45.806	-0.035	18.4	1380.6
2700.	523.1	4.483	2.65	47.13	2.01	35.75	1060.0	47.133	-0.036	20.2	1441.9
2800.	511.9	4.679	2.73	48.50	2.15	38.16	1015.1	48.496	-0.038	22.2	1503.3
2900.	500.9	4.879	2.81	49.89	2.29	40.69	972.0	49.894	-0.039	24.3	1565.0
3000.	491.0	5.066	2.88	51.21	2.43	43.11	933.9	51.206	-0.041	26.4	1621.5
NEWPAGE }											

Figura 43 – Extrato da aba Formatted Results

6.5 COMPARAÇÃO DOS RESULTADOS

Com a finalidade de analisar os dados fornecidos da tabela de tiro do fabricante para o foguete SS-09 TS com os resultados obtidos para 4-DOF e 6-DOF no *software PRODAS*, buscou-se realizar a comparação de ambos os valores conforme será visto a seguir.

No presente projeto, buscou-se estimar, por meio de tentativa e erro, a velocidade de boca do foguete ao ser lançado tanto para 4-DOF, quanto para 6-DOF para obter a velocidade máxima prevista em manual (811,64 m/s). Com isso, obteve-se resultados satisfatórios, conforme percebe-se na Tabela 3.

Fabricante (m/s)	4-DOF(m/s)	6-DOF(m/s)
811,64	812,2	811,2

Tabela 3 – Velocidade máxima.

Além disso, ao estimar a velocidade de boca do foguete ao ser lançado para ambas as trajetórias, obteve-se o tempo até atingir a velocidade máxima. Com isso, gerou-se os resultados apresentados na Tabela 4.

Fabricante (s)	4-DOF (s)	6-DOF (s)
1,17	0,96	0,955

Tabela 4 – Tempo até atingir velocidade máxima.

Vale destacar que o foguete em estudo foi projetado para atender a velocidade máxima prevista em manual (811,64m/s), assim como o tempo até atingir essa velocidade máxima (1,17s), tendo sido esses parâmetros levados em consideração para gerar a tabela de tiro no PRODAS.

Com os resultados obtidos por meio do *software*, percebeu-se que existem divergências quanto ao tempo de voo estimado pelo manual técnico/tabela de tiro do foguete SS-09 TS. Como forma de mitigar tal divergência, buscou-se comparar a velocidade obtida para cada alcance. Contudo, o fabricante não disponibiliza tal informação na tabela de tiro fornecida, tornando-se, desta forma, a comparação com o tempo obtido nas tabelas de tiro do *PRODAS* inviável.

Como forma de prosseguir com a análise e validar os resultados encontrados no *software*, buscou-se comparar dados como: elevação, velocidade e alcance da flecha. Optouse pela análise de tais parâmetros por serem dados significativos para o referido projeto do foguete em análise.

A tabela de tiro do fabricante é disponibilizada com alcance variando de 6300m a 10600m com altitude da viatura lançadora de 0m. Como forma de ser fidedigno ao comparar os dados obtidos pelo *software*, buscou-se restringir os resultados obtidos no programa para o mesmo intervalo de alcance utilizado pelo fabricante, gerando-se desta forma a Figura 51.

Ao comparar as tabelas de tiro geradas pelo *PRODAS* com os dados fornecidos pelo fabricante, percebe-se para o alcance da flecha um erro percentual inferior a 0,02% para um alcance de 6300m e um erro percentual inferior a 1,5% para um alcance de 8000m, conforme pode ser verificado nas Figuras 44 e 45. Optou-se pela análise gráfica do erro até 8000m, pois a partir desse alcance a tabela de tiro do fabricante passa a variar a cada 200m, ao invés de 100m, como vinha sendo feito.

Contudo, ao comparar-se o alcance da flecha com os dados obtidos por *software* para 4-DOF e 6-DOF, obtém-se resultados com erros percentuais inferiores a 0,06%, conforme ilustrado na Figura 46.

Na comparação da elevação fornecida pelo fabricante com a obtida no *software* percebe-se que há um erro percentual inicial de cerca de 5% e 7% para 4-DOF e 6-DOF, respectivamente que tende a se propagar com o aumento do alcance, conforme pode ser verificado nas Figuras 47 e 48. Uma possível solução para este erro seria enquadrar a

Figura 44 – Comparação do alcance *versus* erro percentual de alcance da flecha entre Fabricante e 4-DOF

Figura 45 – Comparação do alcance *versus* erro percentual de alcance da flecha entre Fabricante e 6-DOF

Figura 46 – Comparação do alcance versuserro percentual de alcance da flecha entre 4-DOF e 6-DOF

simulação dentro do quadrante de elevação e das condições meteorológicas estabelecida pelo fabricante, visto que esses fatores também são levados em consideração para gerar a tabela de tiro. Entretanto, tornou-se inviável de ser estabelecida no *PRODAS* devido a dificuldade de acesso a essas informações.

Ao comparar-se a elevação obtida por *software* para 4-DOF e 6-DOF, obtém-se resultado com erro percentual inicial inferior a 2,6% que diminui ao decorrer da trajetória, chegando a ser inferior a 1% após 10400m, conforme ilustrado na Figura 49.

Vale lembrar que como o fabricante inicia a tabela de tiro para o alcance de 6300m, a comparação com os dados relativos a velocidade máxima viu-se impossibilitada, pois de acordo com a simulação gerada no *PRODAS* a velocidade máxima é encontrada para o alcance de 400m, conforme Anexo C e D. Porém, com a finalidade de prosseguir com a análise, buscou-se comparar as velocidade geradas por *software* nos alcances já mencionados, obtendo-se uma média de erro de 0,04% com erros mais pontuais nos extremos do intervalo do alcance considerado, conforme Figura 50.

De acordo com as Figuras 46, 50 e 51, percebe-se que o método com 4-DOF e 6-DOF possuem uma boa aproximação. Da literatura, sabe-se que o método com 6-DOF é o mais preciso para cálculo das trajetórias. Contudo, o mesmo exige grande custo computacional para ser executado, podendo ser aproximado por um modelo de 4-DOF que permite ao projeto deslocar-se na quantidade adequada sem perder tanta precisão, visto que a variação

Figura 47 – Comparação do alcanceversuserro percentual de elevação entre Fabricante e $$4\text{-}\mathrm{DOF}$$

Figura 48 – Comparação do alcanceversuserro percentual de elevação entre Fabricante e $\rm 6\text{-}DOF$

Figura 49 – Comparação do alcanceversuserro percentual de elevação entre 4-DOF e $_{\rm 6-DOF}$

Figura 50 – Comparação do alcanceversuserro percentual de velocidade entre 4-DOF e $_{\rm 6-DOF}$

Alexand	Ve	elocidade		Alca	nce da fleo	cha	Elevação			
Alcance		(m/s)			(m)			(mils)	-	
(m)	Fabricante	4-DOF	6-DOF	Fabricante	4-DOF	6-DOF	Fabricante	4-DOF	6-DOF	
6300		269.1	269.0	3811	3810.1	3811.0	145.7	138.41	134.91	
6400	0	266.2	266.1	3877	3876.8	3877.6	150.3	142.46	138.95	
6500	1 1 1 1	263.4	263.3	3944	3943.1	3943.9	154.9	146.61	143.09	
6600	0.110	260.7	260.6	4011	4007.5	4009.8	159.8	150.78	147.34	
6700	0.1110	258.1	258.0	4078	4073.0	4073.7	164.7	155.14	151.60	
6800	0.1110	255.5	255.4	4145	4138.0	4138.6	169.9	159.61	156.06	
6900	1 1 4	253.1	253.0	4212	4202.4	4203.0	175.1	164.19	160.63	
7000	0.1.4	250.7	250.6	4278	4266.3	4267.0	180.6	168.88	165.31	
7100	Jan 1944	248.4	248.3	4346	4329.7	4330.5	186.2	173.68	170.10	
7200	0.1110	246.2	246.1	4413	4391.6	4393.1	192.0	178.51	175.00	
7300	0.1110	244.1	244.0	4480	4454.0	4454.4	197.9	183.54	179.93	
7400	J 19	242.0	241.9	4547	4516.0	4516.4	204.0	188.69	185.07	
7500		240.1	240.0	4613	4577.5	4578.0	210.3	193.96	190.33	
7600		238.2	238.1	4680	4638.8	4639.8	216.8	199.34	195.70	
7700	2- C - C	236.4	236.3	4748	4698.9	4700.0	223.5	204.78	201.13	
7800	(e. 1. 1)	234.7	234.6	4815	4759.8	4760.9	230.4	210.42	206.75	
7900) – I – ()	233.1	232.9	4882	4820.5	4821.7	237.5	216.20	212.51	
8000		231.5	231.4	4948	4881.1	4882.1	244.8	222.10	218.40	
8100	J= 1 - 5	230.0	229.9	NO	4941.0	4942.6	NO	228.06	224.43	
8200		228.6	228.5	5083	5001.5	5002.3	260.2	234.24	230.52	
8300	10.00	227.3	227.2	NO	5062.0	5063.1	NO	240.56	236.83	
8400	NO	226.1	226.0	5216	5122.5	5123.5	276.5	247.03	243.28	
8500		224.9	224.8	NO	5182.4	5184.0	NO	253.57	249.88	
8600		223.8	223.7	5350	5242.8	5243.6	293.9	260.34	256.56	
8700		222.8	222.7	NO	5303.3	5304.1	NO	267.27	263.47	
8800	1 C C C	221.9	221.8	5483	5363.7	5364.6	312.5	274.35	270.55	
8900	2 C 1	221.1	220.9	NO	5423.5	5424.4	NO	281.54	277.72	
9000		220.3	220.2	5616	5484.0	5484.8	332.4	288.98	285.14	
9100	1.1.1.1	219.6	219.5	NO	5544.4	5545.2	NO	296.59	292.74	
9200		219.0	218.9	5748	5604.1	5605.9	353.9	304.31	300.44	
9300		218.5	218.3	NO	5664.5	5666.3	NO	312.31	308.42	
9400		218.0	217.9	5879	5724.8	5726.5	377.1	320.50	316.61	
9500		217.6	217.5	NO	5/84.5	5786.8	NO	328.83	324.99	
9600	6 I S	217.3	217.2	6010	5844.8	5846.5	402.4	337.47	333.53	
9700	0 1 2	217.1	217.0	NU	5905.0	5906.8	NU	340.33	342.38	
9800	N 8	217.0	216.8	6139	5964.6	5966.1	430.2	355.35	301.38	
10000	et 113	216.9	216.7	6267	6024.7	6026.4	NU 461.2	304.72	270.25	
10100	21.108	210.9	210.7	020/	6144.7	6145 6	401.5	3/4.30	300.17	
10100	0.013	217.0	210.4	6202	6204.0	6205.6	105.0	364.20	300.40	
10200	2 1 8	217.2	210.1	0393	6263.1	6264.7	490.8	394.45	400.84	
10400	2 1 2	217.4	215.7	651F	6203.1	6204.7	520.2	404.91	400.84	
10400	2 8	217.7	215.5	0015 NO	6291 4	6393 E	559.2 NO	413.85	411.75	
10500	· · · · · ·	210.1	214.8	6624	6440 6	6442.4	NU FOA C	427.04	423.04	
10600	· · · · · · · · · · · · · · · · · · ·	218.0	214.4	0031	0440.6	0442.1	594.6	438.79	434.64	

Figura 51 – Comparação das tabelas de tiro

do ângulo de guinada do foguete em estudo é relativamente baixa.

Pode-se dizer, ainda, que mesmo com as restrições impostas ao estudo do foguete proposto foi possível o levantamento de informações relevantes que podem servir como parâmetros a serem refinados para análises futuras.

7 CONCLUSÃO

O presente trabalho passou pelas diversas áreas que abrangem a teoria conceitual de um foguete balístico. Tal projeto demonstra sua importância em aspectos ligados a segurança no monitoramento das fronteiras, florestas e recursos naturais, bem como de garantir a hegemonia frente a países vizinhos, elevando o Brasil a um novo nível de reconhecimento internacional, diante de pesquisas em segmentos do setor espacial.

Buscou-se realizar a modelagem tridimensional do foguete SS-09 TS, utilizando-se das ferramentas que compõem o programa *Solidworks*. Gerando-se, dessa forma, uma estimativa do desenho técnico do foguete SS-09 TS que foi implementada posteriormente no *PRODAS*.

Com o desenho gerado por meio do *software Solidworks* e de parâmetros adaptados do foguete *Hydra - 70*, procurou-se determinar os coeficientes aerodinâmicos do foguete em análise, gerando-se diversos dados tais como: coeficiente de guinada zero, coeficiente da força normal, centro de pressão da força normal, coeficiente de força axial da parte traseira do corpo, entre outros.

Através do levantamento dos parâmetros de interesse para a simulação, foi possível realizar o cálculo da trajetória utilizando-se tanto o modelo massa-ponto modificado (4-DOF), quanto o modelo com seis graus de liberdade (6-DOF). Com a obtenção dos dados relativos a trajetória do foguete em estudo, foi possível comparar os resultados alcançados com o estabelecido pelo fabricante através da tabela de tiro.

Vale ressaltar que o método com 4-DOF e 6-DOF possuem uma boa aproximação. Contudo, como 6-DOF exige grande custo computacional para ser executado, pode-se aproximar o foguete em estudo por um modelo de 4-DOF, visto que a variação do ângulo de guinada do foguete em estudo é relativamente baixa.

Portanto, pode-se dizer que mesmo com as restrições de dados técnicos impostas ao estudo do foguete proposto, foi possível realizar desde a modelagem tridimensional, levantamento dos coeficientes aerodinâmicos e geração de tabelas de tiro que podem servir como parâmetros base de comparação e refinamento para trabalhos futuros.
REFERÊNCIAS

BARANOWSKI, L.; FRANT, M. Calculation of aerodynamic characteristics of flying objects using prodas and fluent environments. *MECHANIK*, n. 1, p. 591–593, 2017.

BARBOSA, L.; BLANCO, A.; DUTRA, D.; SANTANA, W.; ABRUNHOSA, J. A critical evaluation of three models of external ballistics. In: *Proceedings of the COBEM 2005: 18 th International Congress of Mechanical Engineering.* [S.l.: s.n.], 2005.

C 6-40. Técnica de Tiro de Artilharia de Campanha - Volume 1. BRASIL, 2001.

CARLUCCI, D. E.; JACOBSON, S. S. Ballistics: Theory and Design of Guns and Ammunition. New York: CRC Press, 2008.

DUPIUS, A. Aerodynamic characteristic and analysis of a mk82 bomb configuration from free-flight tests. p. 4325, 2001.

EB70-MT-11.000. Manual Técnico: Munições do sistema astros. [S.l.], 2020. 105 p.

FOSTER, N. *The Effects Of The Meplat On Terminal Ballistics*. 2016. 13 jul. de 2022. Disponível em: https://www.ballisticstudies.com/Knowledgebase/The+Effects+Of+The+Meplat+On+Terminal+Ballistics.html.

MAAG, H. J.; KLINGENBERG, G. Gun Propulsion Concepts. Part II: Solid and Liquid Propellants. [S.l.: s.n.], 1996.

MARTHO, A. G. Nota de aula - Propelentes. [S.l.: s.n.], 2020.

MCCOY, R. L. Modern Exterior Ballistics: The Launch and Flight Dynamics of Symmetric Projectiles. Atglen, PA, USA: Schiffler Military Story, 1998.

MEYER, R.; HOMBURG, A.; KöHLER, J. Explosives. [S.l.: s.n.], 2007.

PARSCH, A. Directory of U.S. Military Rockets and Missiles. 2009. 06 jul. de 2022. Disponível em: https://www.designation-systems.net/dusrm/app4/275in-rockets.html>.

STEPHANI, E. C. B. Evolução mísseis brasileiros. DaCultura, n. 1, p. 18–29, 2014.

APÊNDICE A – COEFICIENTES AERODINÂMICOS - PRODAS

	Amodynamics	A Anna Real Anna Anna Anna Anna Anna Anna Anna An			
		A NOT A LONG TO	I IN PA	(Down	
	Dispension	3 Stability Evaluation		1 frame -	
	Bajectones	Alero Direct logut	10 400 Att	Josephi - Longiete	
	Former Tables				
	Terminal Ballictics	3			
	User Added Analysis				
-					
-	Co-FO				
-					
-					
1					
			Properties .		Assembly Units
			ReLevan		Conglete
			Langth *		1365.730 mm
			winght *		11 900 4g
			IX+		.008 kgm*2
			7/*		1823 kgm2
			12" *		000 kg n'2
			* Info CINL /		
			A COLOR		
	Add care 1	Dire			
Addam	Sotroab				
<u>Add Aren</u>	Sotrout	Calcillary Advited			

Figura 52 – Extrato tela PRODAS - Analysis - Aerodynamics

RCDAS - (SS_09_TS_Finish_Cap_Crespo.pr3 - Aero Pre File Edit Analysis Support Tools Windows	Help.		- 8 -
	1 50 20		
metty Inputs Feu/Flare Data Fin Contiguation Groove	Data Aem Model Adv. Liter D	Shill Fornated Result Tabular Result Fisheroi Polied Result Aero Forn Facturi	
Flora Provide Length 1192 7900	Dave Length	54.700	
Meplet Durmier 20000 Invi	Opher Radius	422 5090 lines	
Reference Dianeter 70.6120 mm	Room Length	0.000 jum	
G how Nove 634 1850 mm	Boon Diameter	0.000 (mm	
	Boatial Length	0.000 Ine .	
	Bostal Exampler	0000 m g	
ower Mach for Table 1.0			
Upper Mach for Table 4.0	Areo Table Statur		
	Nove Type	p+	
and the second			

Figura 53 – Aba Geometry inputs

Figura 54 – Aba Aero Model

Figura 55 – Aba Tabular Results

APÊNDICE B – TRAJETÓRIA DO FOGUETE SS-09 TS PARA 4-DOF - PRODAS

Figura 56 – Extrato tela PRODAS - Analysis - Trajectories

Figura 57 – Aba Setup/Run

21 File Edit Analysis Support Tools Windows 1 (과 대한 1년	Hele - ((2) (2) (2)	
etquilium Dutput Selup Initial Conditions Prosentie Pr	andres Ans Fran Facture Budy Dates Femane (Female Tabate Penale Potent Female	
	14	
Input ICs with Table Use Ether survey of Ve V/V/	Mel Table Soutce Utare	
	Love Mail Type (Likkuch Barriet	
in Sele	Possible total Posson	
Ounitary Elevator 185 000 Ourver	trad X protein	
Gun Antinuth 0.000 (deg	InAul Ypostor	
	HidZpole 5 m	
Carrier .	Stars Teer 0000 er	
Hunte Vender		
Special Marrier	Practic Angles and Ram	
There is a second second	marrienge 00 jag	
Tal Spectrum	marteringe 1 66 (big	
L att	Vene recirer 00 (recire)	
Calculate Spec	over the had a perfect.	

Figura 58 – Aba Initial Conditions

Figura 59 – Aba Projectile Parameters

	P 55 H	1 SE		E	DOUB	œ																
Bun	Output Setup	Initial Conditi	ons Project	ile Paramel	ters Body SI	ates Format	ted Results	Tabular Re:	sults Ploth	ed Results												
-	Time	x	- 1	z	Slant	Velocity	Spin	AlphaBar	Alpha	Beta	Mac	h]	Diop	Drift	Gyla	FastFreq	KineticEner	SlowFreq	SpinDegM	fastArmMag	slowArmMaç	DvDx
	sec	m r	n	m	m	m/sec	rad/sec	deg	deg	deg			militad	miltad	-	deg/m	kilojaule	deg/m	deg/m	deg	deg	m/sec/10
Lock	0.0000	0.00	0.00	10.0	0 00	0 97.5	0 00	1 0	DA.	0.00	0.00	0.295	0.00	0.00	01	0 40	0 56 9		0 0.01	0.029	0.029	-26.1
-	0.0000	0.00	0.00	10.0	10 0.0	0 97.6	0 0.0	1 0	104	0.00	0.00	0.295	0.00	0.00	0.0	0 4.0	0 56.9	-4.0	0 0.01	0.025	9 0.029	-26.1
	0.4367	.98.61	0.00	26.6	100.0	366.4	2 49,4	5 0	04	0.00	0.00	1.106	14.74	0.01	0.0	0 5.6	684.1	-5.5	7 7.73	0.025	0.029	1896.5
1	0.6592	197.37	0.00	42.3	33 200.0	0 539.0	1 123.0	9 0	04	0.00	0.00	1.627	19.28	0.0	0.0	0 5.0	0 1335.1	-4:9	4 13.08	0.029	0.029	1600.0
-	0.8222	296.18	0.00	57.6	59 300.0	0 6917	5 191.2	4 0	04	0.00	0.00	2,088	21,96	0.0	0.0	0 3,9	9 2002.7	-3.9	3 15.84	0.029	9 0.029	1467
-	1.0792	335.03	0.00	07.0	95 400.0 17 500.0	0 809.0	248.8 2 297.4	8 U 0 0	04	0.00	0.00	2.443	23.83	0.0	0.0	0 3.5	2040.5		0 17.62 5 21.22	0.025	0.029	-149
-	1.2045	592.79	0.01	102.7	3 600.0	10 783.9	7 334.8	8 0	104	0.00	0.00	2.367	26.46	0.0	0.0	0 3.7	2 2360.5	3.6	2 24.48	0.025	9 0.029	147.8
	1.3335	691.71	0.01	117.4	2 700.0	0 769.2	6 362.8	2 0	.04	0.00	0.00	2.323	27.55	0.0	0.0	0 3.6	2292.0	-3.6	8 27.02	0.025	0.029	-145.5
	1.4646	790.65	0.01	131.5	97 800.0	0 754.8	7 384.0	6 0	.04	0.00	0.00	2.279	28.56	0.01	0.0	.3.8	37 2205.9	-3.7	5 29.16	0.025	9 0.029	-145.1
	1.5985	889.61	0.01	146.3	900.0	740.2	4 398.5	8 0	04	0.00	0.00	2.235	29.55	0.00	. 00	3.9	4 2122.3	-3.8	1 30.85	0.029	0.029	-143.1
-	1.7349	988.61	0.02	160.5	1000.0 5 1100.0	10 725.5	4 408.5	0 0	04	0.00	0.00	2.192	30.51	0.02	0.0	U 4.0	JU 2041.1	-3.8	7 32.24	0.025	9 0.029	-142.
-	2.0160	1199.62	0.02	100 1	27 1200.0	0 /11/	8 414.4	5 U 6 U	04	0.00	0.00	2.150	31.45	0.0		AU 4.0	1962.3	-33	G 33.36 9 24.24	0.025	0.029	-140
	2.1606	1285.74	0.02	202.0	1 1300.0	683.9	3 417.3	7 0	104	0.00	0.00	2.066	33.38	0.0	0.0	0 4.1	9 1811.7	-4.0	4 34.96	0.025	0.020	-137.0
-	2,3085	1384.85	0.03	215.4	13 1400.0	6702	6 415.4	8 0	04	0.00	0.00	2,025	34,36	0.00	0.0	0 4.3	5 1740.0	41	0 35.52	0.029	0.029	-136.1
	2.4590	1483.98	0.03	228.6	5 1500.0	0 656.7	2 412.2	з б	.04	0.00	0.00	1.984	35.34	0.02	0.0	0 4.3	1670.4	-4.2	1 35.96	0.029	0.029	-134.
	2.6131	1583.15	0.04	241.6	1600.0	0 643.3	6 407.6	0 0	84	0.00	0.00	1.944	36,35	0.03	2 0.0	4.5	54 1603.2	4.3	8 36.30	0.025	9 0.029	-1324
-	2.7700	1682.34	0.04	254.3	1700.0	0 630.1	5 402.0	3 0	04	0.00	0.00	1.904	37.37	0.03	8 0.0	0 4.7	0 1538.0	-4.5	5 36.55	0.025	9 0.029	-131.
-	2.9305	1/81.58	0.05	266.0	8 1900.0	0 617.1	0 395,6	3 U	04	0.00	0.00	1.854	38.42	0.0	u ui	U 4.1	85 14/5.L	4.7	1 36.73	0.025	9 0.029	-129
-	3.0343	199014	0.0	273.	A 2000 C	0 604.2	2 300.0	6 U 7 D	104	0.00	0.00	1.020	33,43	0.00	0.0	0 51	IZ 1414.0 IS 1355.1	-4.0	0 30.00 1 36.93	0.025	0.023	-127.3
-	3 4325	2079.48	0.06	302.6	5 2100.0	0 578.9	5 373.6	0 0	04	0.00	0.00	1.749	40.33	0.0	00	0 53	12982	51	5 36.97	0.025	0.023	-124
	3.6072	2178.86	0.07	314.2	2200.0	0 566.5	7 365.8	5 0	04	0.00	0.00	1.712	42.87	0.0	0.0	0 53	1243.3	-51	6 37.00	0.025	9 0.029	-122.5
	3.7857	2278.27	0.08	325.4	0 2300.0	0 554,3	5 358,1	2 0	04	0.00	0.00	1.675	44.06	0.03	0.0	0 5.3	1190,2	-5.1	8 37.01	0.025	9 0.029	-121.
	3.9681	2377.73	0.09	336.2	2400.0	0 542.2	9 350.4	6 0	.04	0.00	0.00	1.639	45.28	0.04	L 0.0	0 5.3	1139.0	-5.2	0 37,03	0.029	9 0.029	-115.
_	4,1546	2477.22	0.09	346.7	70 2500.0	0 5304	0 342,8	6 0	04	0.00	0.00	1,603	46,53	0.0	0.0	0 5.3	37 1089.6	-5.2	1 37.04	0.029	9 0.029	-117
_	4.3454	2576.76	0.10	356.0	3 2600.0	0 518.6	8 335,3	5 0	104	0.00	0.00	1.568	47.83	0.0	0.	0 5.3	1042.0	5.2	3 37.04	0.029	0.029	-116.
-	4.5405	25/5.35	011	366.6	1 2200.0	10 507.1	3 327.3	2 0	04	0.00	0.00	1.533	43,16	0.0		0 5/	0 336.1	-3.4	6 37.05	0.025	0.029	-112
-	4 9443	2875.65	012	395.0	1 2900.0	484.5	4 3133	8 0	104	0.00	0.00	1 465	51.95	0.0	0.0	0 5/	18 909.5	53	2 37.05	0.025	9 0.029	-111
-	5.1533	2975.37	0.13	393.6	3000.0	473.4	8 306.2	0 0	.04	0.00	0.00	1.431	53,40	0.04	0,0	0 5.5	3 868.3	-5.3	8 37.05	0.025	0.029	-109.6
	5.3672	3075.15	0.14	401.7	6 3100.0	462.6	0 299.1	2 0	104	0.00	0.00	1.398	54.91	0.05	i 0.(0 5.5	828.6	-5.4	3 37.05	0.025	9 0.029	-107.9
	5.5862	3174.97	0.15	409.4	15 3200.0	10 451.8	7 292.1	3 0	.04	0.00	0.00	1.366	56.47	0.05	0.0	0 5.6	54 790.9	5.4	8 37.04	0.025	9 0.029	-106.
_	5.8105	3274.85	0.16	416.6	3300.0	441.3	2 285.2	4 0	.04	0.00	0.00	1.334	58.08	0.0	0.0	0 5.7	70 754.3	-5.5	4 37.03	0.025	9 0.029	-104
-	6.0401	33/4.17	0.17	423.3	st 3400.0	10 430.5	4 2/8,4	3 U	04	0.00	0.00	1.303	59,74	0.05	0.0	N 5.7	/ /19.3	-56	9 37.02	0.029	0.029	-102,
-	6.5164	3474.76	0.20	435.0	2 3600.0	0 420.7	1 265 1	5 0	04	0.00	8.00	1.242	61.45	0.0	0.0	0 5.0	0 653.4	.5.5	4 36.99	0.025	a 0.029	-100
	6.7633	3674.89	0.21	440.2	3700.0	400.8	7 258.6	8 0	.04	0.00	0.00	1.212	65.06	0.00	0.0	0 5.9	6 622.4	-58	0 36.97	0.029	9 0.029	-97.
	7.0166	3775.05	0.22	444.1	3 3800.0	0 391.2	0 252,3	3 0	04	0.00	0.00	1.183	66.97	0.06	0.0	0 6.0	3 592.7	-5.8	7 36.96	0.025	0.029	-95.
	7.2761	3875.26	0.24	448.5	3900.0	381.6	3 246.0	9 0	104	0.00	0.00	1.154	68.94	0.08	0.0	6.1	0 564.1	-5.9	5 36,95	0.029	0.029	-94.0
	7.5423	3975.54	0.25	451.6	4000.0	372.1	8 239.9	5 0	04	0.00	0.00	1,125	70.98	0.06	0.0	6.1	8 536.5	-6.0	2 36,94	0.025	0.029	-93.
-	7.8155	4075.88	0.27	454.0	19 4100.0	362.6	4 233.9	n 0	.04	0.00	0.00	1.097	73.09	0.07	0.0	0 6.2	3 509.9	6.0	6 36.94	0.029	0.029	-92
-	8.0358	41/6.28	0.28	450.4	4200.0	10 303.6 10 3444	228.0		04	0.00	0.00	1.069	75.23	0.0	0.0	0 6.1	0 484.4 X5 460.0	-5.9	a 36.94 0 32.00	0.025	0.029	-91.
-	8,6790	4377.27	0.30	456.0	4300.0	0 336.0	7 216.7	2 0	104	0.00	0.00	1.042	79.93	0.0	0.0	0 50	437 4	.57	9 36.95	0.023	9 0.029	-07.
-	8,9820	4477.86	0.34	455.8	4500.0	328.1	9 211.3	9 0	04	0.00	0.00	0.992	82.38	0.07	0.0	0 58	417.2	-57	0 36.90	0.025	9 0.029	-74
	9.2921	4578.51	0.35	454.1	1 4600.0	0 321.1	6 206.3	5 0	04	0.00	0.00	0.971	84.93	0.05	0.0	0 5.8	399.5		6 36.81	0.029	0.029	-65
	9,6090	4679.23	0.38	451 3	4700 0	0 314.9	6 201,6	7 0	.04	0.00	0.00	0,952	87.57	0.08	0.0	0 57	8 384,2	-5,6	2 36.69	0.029	0.029	-57.
	9.9321	4780.01	0.40	447.6	6 4800.0	309.3	3 197.3	8 0	.04	0.00	0.00	0.935	90.32	0.08	0.0	10 5.7	4 370.6	-5.5	9 36.56	0.029	0.029	-54.1
_	10.2613	4880.84	0.42	442.9	4900.0	304.0	1 193.4	6 0	04	0.00	0.00	0.919	93.16	0.05	0.0	0 5.7	1 358.0	-5.5	5 36.45	0.029	0.029	51.7
_	10.5966	4981.73	0.44	437.0	5000.0	298.9	8 189.8	2 0	04	0.00	0.00	0.904	.96.11	0.05	0.0	U 5.6	346.2	5.5	2 36.38	0.029	0.029	48.4
	10.9377	5082.67	0.47	430.0	5 5100.0	JU 294.2	186.4	3 0	04	0.00	0.00	0.889	.99.17	0.05	0.0	IU 5.6	i4 335.2	-5.4	9 36.31	0.025	9 0.029	-4

Figura 60 – Aba Tabular Results

APÊNDICE C – TABELA DE TIRO DO FOGUETE SS-09 TS PARA 4-DOF - PRODAS

Aerodynamics	1				I RS EN Protectie	*		
Insections	0				No. Annesida Complete			
Internor Salistics	2							
Firing Tables	Artillery	1						
Terrninal Ballistics	Direct Fire							
User Added Analysis	> Monar							
	Line of Sight							
	Line of Sight Als/Manne							
	Ballistic Tables							
	Rocket.							
_								
				PA				
-								
- 11								
-				A A				
_								
-					Properties		(Assembly	Unix
-					Popeles Nam		AssemblyComplete	Unix
-					Popular Name Ref. regit		Assessbly Complete	Units 1000 min 1000 min
					Popelin Hang Toto gin Conget "		Assessby Conside	Unix 000 min 1986 780 min 11 500 Vig
-					Projektes Liper Li		assessby Complete	Units 0000 ants 11560 F20 mm 11500 F20 724 200 mm
					Popelin Hang Daright Caligo San Safe S 7		Anuerédy Complete	Units 000 Ark 1356 730 Are 13.500 Kg 234.300 Are 1.000 Kg/m ²
-					Projektes Lanae Longel		Annesdy Cropies	Units 000, min 1986, 700, min 11.900, Vap 724.000, min 000, Vapm ² 2 1.022, Vapm ² 2 000, Vapm ² 2
					Popular Hana Dang do Dan Safe Si ano Safe Si ano Safe Si ano Si a		Laurety Coopies	000 am 11 500 520 mm 11 500 520 mm 200 topm 72 2000 topm 72 2000 topm 72

Figura 61 – Extrato tela PRODAS - Analysis - Ballistic Tables

PRODAS - [_P2K57525555_09_T5_Finish_Cap_C File Edit Analysis Support Tools W	Despoyed - Ballistic Tables) Indows Help		- 0
	· · · ·		
nte (Reuer, Table) Forumed Datasel (Petr) (oppin Datase)	Poincille Plansmer, Regrit Vinger, Tager / Drop Extrint Regrit Drop Extrint Table No. 1000 mm Table No. 1000 mm	4.6007 Annotanese Continuer From Factor Desgription Factor Oth Jone Factor Desk Jone Factor Fine Briefs FF 1000 Fine Briefs FF 1000 Fine Briefs FF 1000 Fine Briefs FF 1000	
Photog Maneel IT 100 Carego Stamer / 17 100 Hagasi Homer / 17 300 Sale Maneel / 17 500	Induced Pick Face FF 000 Induced Side Face FF 000 Induced Fick Mars FF 000 Induced Side Mars FF 000 Induced Side Mars FF 000	DetaDog17 100	

Figura 62 – Aba Setup

PRODAS - [_P2K575255SS_09_TS_Finish_Cap_Crespo.pr3 - Ballistic Tables]

St File Edit Analysis Support Tools Windows Help

									-	1
	Range	RemainingV	TimeO/Fligh/	QE	AngleOfDes	KineticEnerg	Drop	Dift	VertexHeigh	VertexRang
Units	m	m/sec	sec	Gunner Mil	deg	kilojoule	deg	deg	m	m
led=Lock	-	05.00	0.0000	0.00	0.00		0.00			
_	0.0	95,60	0.0000	0.00	0.00	54,4	0.00	0,00	0.0	0,0
	100.0	364.92	0.4365	15.49	0.37	6/1.6	0.87	0.00	0.2	40.4
	200.0	535.45	0.6560	20.09	0.39	1320.2	1.13	0.00	0.5	76.
	300.0	686.61	0.8161	22,83	0.38	2005.0	1.28	0,00	0.7	111.1
_	400.0	812.22	1.9036	24.33	0.3/	2610.2	1.40	0.00	1.0	148.
_	500.0	801,38 709,C1	1.0733	25.30	0.37	2431.1	1.40	0.00	1.4	1/3.
	700.0	788,61	1.1363	27.43	0.39	2908,7	1.00	0.00	1.4	213,
_	700.0	773.38	1.3314	28.65	0.42	2320.2	1.61	0.00	1.1	200.
_	800.0	739.42	1.4630	29.77	0.46	2233.8	1.5/	0.00	2.0	303,
_	9000	/46.6/	1.093/	30.71	0.50	2159.3	1.73	0.00	2.3	304.
_	1000.0	732,78	1 7327	31./1	0.55	2079.8	1.78	0.00	2.1	413.
_	1000	713,88	1.8533	32,60	0.60	2007.2	1.84	0,00	31	480,
	12000	/06.41	2.00/6	33.64	0.66	1932.8	1.83	0.00	3.0	04.3. COE
	1300.0	693,04	2,1531	34,63	0.72	1860.3	1,95	0,00	4.2	605,
	14000	680,69	2,2313	35.57	0.78	1794.6	2.00	0.00	4.(553,
_	1500.0	667.70	2 4409	36.57	0.85	1/26./	2.06	0.00	5.4	723
_	1600,0	654.78	2.5941	37.60	0.92	1660,6	2.11	0.00	6.2	/84.
_	1/000	641.35	27509	38,64	1.00	1596.2	2.17	0.00	7.0	644.
	1800.0	629.25	29112	39.71	1.08	1533.6	2.23	0.00	7.9	904.1
_	1900.0	618.07	3.0565	40.69	1.15	14/9.5	2.29	0.00	8.8	958,4
_	2000.0	605.71	3.2222	41.80	1.24	1421.0	2.35	0.00	9.9	1018.
	2100.0	593.45	3.3918	42,94	1.34	1364.1	2.42	0.00	11.1	10/8.9
_	2200.0	581,31	3.5654	44.11	1,44	1308,8	2.48	0,00	12.4	1138
	2300.0	569.29	3.7430	45.31	1.54	1255.3	2.55	0.00	13.7	1199.6
	2400.0	557.43	3.9242	46.54	1.65	1203,5	2.62	0.00	15.2	1260,0
	2500.0	545,74	4,1090	47.81	1.77	1153,5	2.69	0,00	16.8	1321.0
	2600.0	534.24	4.2973	49.10	1.89	1105.4	2.76	0.00	18.6	1382.1
_	2700.0	524.18	4,4674	50,28	2.01	1064.2	2.83	0,00	20.2	1437,1
_	2800.0	512.91	4.6646	51.66	2.15	1019.0	2.91	0.00	22.2	1499.
	2900.0	501.79	4.8653	53.07	2.29	975.2	2.99	0.00	24.3	1561
	3000.0	490.83	5.0722	54,52	2.44	933.1	3.07	0,00	26.6	1623,1
_	3100.0	480.05	5.2824	56.02	2.60	892.6	3.15	0.00	29.0	1686.
	3200.0	469,45	5.4966	57.55	2.77	853.6	3.24	0.00	31.6	1749.4
	3300.0	459,06	5.7149	59.13	2.94	816,2	3.33	0.00	34.4	1812.
	3400.0	449.82	5,9161	60.60	3.11	783.7	3.41	0.00	37.0	1869.
_	3500.0	439.71	6.1448	62.27	3.30	748,9	3.50	0.00	40.1	1933.
	3600.0	429.77	6.3788	64.00	3.51	715.4	3.60	0.00	43.5	1997.
	3700.0	420.02	6.6181	65.79	3.72	683.3	3.70	0.00	47.0	2062.1
_	3800,0	410,45	6,8623	57.63	3.95	652,5	3.80	0.00	50.8	2126.5
-	3900.0	401.02	7,1114	69.52	4.19	622.9	3.91	0.00	54.8	2191.5
	4000.0	392,24	7.3516	71.36	4.42	595,9	4.01	0,00	58.9	2253,
	4100 0	382,99	7.6134	73,38	4.69	568,1	4.13	0,00	63.4	2319.
_	4200.0	373.86	7.8815	75.47	4.96	541.4	4.25	0.00	68.3	2385.8
_	4300.0	364.89	8,1557	77.63	5.26	515,7	4.37	0.00	73.4	2452.
	4400.0	356,25	8.4358	79,85	5.57	491.5	4.49	0.00	78.8	2519,1
	4500.0	348.46	8,7132	82.09	5.88	470.3	4.62	0.00	84.4	2584.0
_	4600.0	341.05	9,0065	84.47	6.22	450.5	4.75	0.00	90.6	2651.
_	4700.0	334.47	9.3057	86.93	6.58	433.3	4.89	0.00	97.1	2719.5
	4800.0	328.64	3.6100	89.47	6.95	418.3	5.03	0.00	104.0	2787.6
	4900,0	323.37	9,9143	92,06	7.32	405.0	5,18	0,00	111.1	2854,8
	5000.0	318.28	10.2294	94.77	7.72	392.4	5.33	0.00	118.8	2923.4
	5100.0	313,44	10.5498	97.58	8.13	380,5	5.49	0.00	127.0	2992.3
	5200.0	308.91	10.8695	100.43	8.54	369.6	5.65	-0.01	135.5	3060.0

Figura 63 – Aba Results Tables

APÊNDICE D – TRAJETÓRIA DO FOGUETE SS-09 TS PARA 6-DOF

8 Mass Properties			
Aerodynamics	D Contraction		
Dispersion	21 August and a second		
Trajectories	Fixed Plane - 4D		
Firing Tables	> Body Fixed		
Terrinal Ballistics	2		
User Added Analysis	0		
F			
			TTO Los
1			And I have

Figura 64 – Extrato tela PRODAS - Analysis - Trajectories

Figura 65 – AbaSetup/Run

PRODAS - [_P2K57525555_09_T5_Finish_Cap	_Crespotrop - Fixed Plane - 6D]	- o ×
Setup-Run Dulput Setup Initial Conditions P	opendie Parameters Aero Form Factors Body States Formatted Results Polited Results	
T Input ICs with Table Use Either s.v.w.or Vx	ykar gydyd Martin Martin yw Angellan yw Argen yw	
for the	Desch Lief Deles	
Quadrant Elevation 115.000 Gury	er InhalX posters 0 m	
Sun Asmath 0000 Days	Intel Youling	
account from loop		
	Ineas 2 poinces 5 m	
Projectile Spin Rate	Stat at Time 0.000 sec	
Muzzle Velocity 37,8 m/se	Principa Archie and Ester	
Spin at Muzzle 0. 143/	ec Initial Pitch Angle 0.0 Idea	
Twist 2000 0400	n light/ambride	
Fut Son Bain		
0.00	Invariantinae DU radinacia	
Calculate Spin	inhar Yee Fiste 00 (advec)	

Figura 66 – Aba Initial Conditions

Figura 67 – Aba Projectile Parameters

-	-	the second second second	-	1000	-	an on the	1	-	-	_	-	-	-									_	-
un C	Lupin Setup	Initial Condition	901 P	rojacele P	arameter	Aero For	m Factori E	logu States	Formetted P	teruke 🔟	abular Hexuit	Is Floned	Results										
1	Time 1	8 13	1	7	1	Slare	Velocity	Spin	AlphaBa	Abba	Enta	116	nch	Drop 1	find	Gyera	FastFree	KineticEnerg	SlowFing	SpinDagM	forstAmildag dr	mAmMag	DvDx
NR.	iec i	m	a	m			m/sec	/ad/tec	deg	deg	deg			milirad r	betlin	-	deg/m	kilojoule	deg/m	dec/m	deg de	9	n/sec/
and a	0.0300	0.00		0.00	5.00	6.0	97.8	a ni	11 0	m	nm	0.00	0.783	n an	0.0	5 00	38	2 56.9	31	e in	0.000	0.000	-26
	0.4366	90.57		0,00	21.08	100.0	366.7	9 44.	9 8	.03	0.03	0.00	1.050	12.03	0.0	0 00	0 5,2	6 605.5	-5.2	28 7.00	0,056	0.056	1099
	0.6588	197.28	- 1	0.00	37.69	200.0	5396	9 116.	14 0	03	-0.03	0.00	1,560	16.42	0.07	00	4.8	2 1338.8	-4,)	12.36	0.023	U U24	1604
-	0.8216	236.04		0.00	53,56	300.0	1 0110	4 165, 5 1949)	32 0	09	0.00	0.00	2003	13.65	0.0	0.0	0 3,9	4 2003.7	31	15,33	0.001	0.003	14/2
-	1.0769	493.67		0.00	84 33	500.0	8022	0 292	xo u Y5. D	00	0.00	0.00	2 370	20.88	0.01	00	38 0	1 24925	35	5 20.79	0.004	0.004	140
-	1.2027	592.51		0.01	99.50	600.0	700.1	7 323.	07 D	00	0.00	0.00	2,200	23.47	0.0	0.0	0 3.7	0 2406.1	30	0 23.92	0.005	0.005	-179
	1.3307	691.38		10.0	114.51	700.0	7742	7 358.	24 U	00	0.00	0.00	2.240	24.54	0.01	00	1 3.7	7 2321 9	-31	走 26.51	0.006	0.005	-138
	1 4610	790.28	1.1	10.0	129.36	800 0	760.4	a 380	10 0	10	0.00	0.00	2,200	25.54	0.01	00	380	3. 2240.1	33	71 28.64	0.007	0.007	137
_	1.5937	883,13	-	0.01	144.05	900.0	746.8	5 255	30 0	00	0.00	0.00	2,161	25.51	0.0	0.0	0 3.0	9 2150.4	-37	75 30.39	0.007	0.007	-135
	1.7268	388.14		0.02	123.00	1000.0	7333	4 405	N 0	00	0.00	0.00	2122	27.45	0.01	00	3.9	4 2083.0	-30	ri 31.60	0.007	800.0	-124.
-	20052	1186.11		0.02	187.05	12010	1 719.9	3 4020	2 0	100	0.00	0.00	2106	28.85	0.0	2 00	1 40	5 1994 C		40 3230 41 3230	0.005	11112	-125
	21495	1285.14		0.02	201.01	1300.0	593.6	4. 419	5 0	00	0.00	1.00	2009	30.27	0.00	2 6.6	0 41	0 1853.5	34	36 34.63	0.008	0.009	130
_	2,2350	1364 19		0.03	214.78	1400.00	680 6	9 418.	6 0	00	0.00	0.00	1,971	31.22	0.00	2 00	0 4.2	4 1794.6	-4.0	9 35 23	0.000	0.009	-128
-	2.4433	1483.28		0,03	228.33	1500.00	66/ 8	8 416.	29 0	LUU	0.00	0.00	1.935	32.18	0.05	2 0.0	0 4.3	9 1727.7	-4.2	24 35.71	0,008	0.009	-127
	2 5 9 4 5	1582.40		0.03	241.67	1500.0	685.2	1 412.	5 0	LON	0.00	1.00	1.898	33.16	0.02	2 00	0 45	4 1662.8	- 43	19 35.08	0.008	0.009	125
-	2.7487	1681 55		0.04	254.79	1700.00	642.6	8 407.	12 0	.00	0.00	0.00	1,862	34.15	0.0	2 00	0 4.6	6 (599.8	-4.5	53 36.37	0.000	0.009	-124
-	2.9058	1/80.73		0.04	267.68	1800.00	530.3	0 402	34 0	100	0,00	0.00	1.827	35.17	0.00	2 0.0	8.1 0	2 1538.7	-4.8	6 36.57	0,008	0.009	-123.
-	3 2205	1979.20		0.05	395.71	2000.00	0 005.0	4 200	12 0	00	0.00	0.00	1.767	37.27	0.00	2 00	4 47 0 50	9 19/30	- 40	1 36.7 <i>c</i>	0.000	0.009	-120
	3 3962	2078.48		0.06	304 84	2100.0	594 0	5 382	13 D	00	0.00	n.00	1 722	38.25	0.0	3 00	0 51	0 1366.8	45	5 3689	0.008	0.005	118
	3,5663	2177.91		0.06	316.70	2200.0	502.2	6 375.	10 D	00	0.00	0.00	1.668	39.45	0.0	3 00	0 5.t	2' 1313.1	-4.5	6 36.93	0.000	0.010	-117
	3,7398	2277.17		0.07	328.28	2300.00	5/06	1 368	17 0	00	U.0U.	00.0	1.655	40.60	0.00	a U0	8 51	3 1261 1	-43	36.97	0.009	0.010	-115.
	3.9169	2376.57		0.07	339.56	2400,00	9 559.1	1 361	0 0	00	0.00	n.00	1.622	41 77	0.02	3 0.0	0 51	5 1210.8	45	9 36.39	0.010	0.010	114
-	4.0977	2476.01		0.08	350.53	2500.0	547.7	6 353.	36 0	00	0.00	0.00	1.569	42.97	0.03	3 00	9 51	6 1162.1	-5.0	01 07.01	0.010	0.011	-112
-1	4 2823	2575 49		80.0	361 17	2600.00	536-5	6 346	6 0	00	0.00	0.00	1.667	44.20	0.00	3 00	8 51	8 1115.1	-6.0	12 37.03	0.011	0.011	-111.
-	4 4/0/	25/5.01		010	3/1 49	2/00/0) <u>525.5</u> 5 ELAC	1 338	12 0	00	0.00	0.00	1 5/5	45 67	0.0	t 00 t 00	0 51	9 10698	51	23 37 04	0.001	0.012	109
-	4,00.31	2974.30		0.10	301.45	2500.00	1 914.5	1 332 6 3353	2 1	00	0.00	0.00	1.450	40.77	0.04	1 10	0 5.2	1 10.20.7	-61	1 37.05	0.017	0.012	-106,
-	5,0504	2973.05		0.12	400.27	3000.0	493.2	5 318	χ. B	00	0.00	0.00	1432	49.48	80	1 00	0 53	9423	-5	6 37.05	0.012	0.013	-105
	5.2855	3073.55		0.13	409.09	3100.0	482.7	9 312	17 0	00	0.00	0.00	1,401	50.90	0.0	1 00	0 5.3	5 902.8	-5.2	37.05	0.013	0013	-103.
	5.4751	3173.30		0.14	417 49	3200.00	472.4	7 305	45 0	.00	0.00	0.05	1.371	52.35	0.04	4 0.0	0 E.4	1 864.8	5.	25 37.84	0.013	0.014	162
	5.6693	3273 10		0.15	425.46	3300,0	462.2	9 238	32 8	.00	0,00	0.00	1,342	53.85	0.04	4 0.0	0 5.4	6 827.8	-5.3	30 37.04	0,014	0.014	-100
	5.9083	3372.96		0.16	432.98	3400.0	452.2	8 232	27 0	100	0.00	0.00	1,313	55.41	0.0	5 00	0. 5,5	2 792.3	-5.3	36 37.03	0.014	0.015	-33
-	6.1322	3472.86		0.12	440 02	3500.0	442.4	2 285.	0 0	00	non	0.00	1.285	57.01	0.02	5 00	9 55	8 758.1	.6.4	42 3710	0.015	0.015	
-	0.3012 p.1.902	3572.02		0.18	440.30	2/00.00	4327	2 273. 0 772	10 D	.00	0.00	0.00	1.7254	20.00	0.05	5 00	0 0.0	0 (202 0 0000	-2.	40 37.00 Es seux	0.015	0.015	-00
	6.8348	3772.90		0.20	458.06	3800.0	4137	9 266	9 0	100	0.00	0.00	1 202	62.11	0.0	5 00	0 57	4 6532	51	59 36.97	0.016	0.017	43
-	7.0798	3873.02		0.21	452.57	3900.0	404.5	4 260	13 U	00	0.00.	3.00	1.175	63.92	0.0	5. 0.0	5.8	1 633.9	-5.6	5 36.96	0.017	0.018	-91
	7.3305	3973.20	1115	0.23	467.28	4000.0	395.3	8 254	97 0	00	0.00	0.00	1 148	65 80	0.06	6 0.0	0 58	7 805.5	- 53	72 36.95	0.017	6//18	-90
	7.5072	4073.44		0.24	470.96	4100.00	306,3	3 249.	0 9	00	0.00	0.00	1.122	67.73	0.00	6 0.0	0 5,9	4 578.1	-5.7	78 36.94	0.016	0.019	-69
	7.8900	4173.73		0.26	473.99	4200.0	377 3	7 243.)	30 U	00	0.00.	3.00	1.096	69.73	0.08	6. 0.0	8 59	5 501 5	-5.8	82 36.94	0.019	0.020	-88
-	8 1192	4274 09		0.27	476.32	4300.0	368.5	3 237	54 0	00	0.00	0.00	1 070	71.79	0.06	6 00	0 5.9	0 526.0	- 63	75 36.95	0.020	0.021	-87
-	8.3950	4374.51		0.23	477,94	4400.00	3 359.9	2 232	3 0	00	0.00	0.00	1.045	73.93	0.07	0.0	0 5,0	2 501.5	50	35,95	0.025	0.022	-65
	8.6//6	4575.52		0.30	4/8/3	4500.00	315	220.	10 U	01	0.00	0.00	0.021	70.14	0.0	- 0.0 T 0.0	a 9(a 9/8.5 4 area	-0.5	10 36.36	0.022	0.024	-/9
-	9,2625	4576.13		0.34	470.05	4700.00	1 3458	9 216	30 0	01	0.00	0.00	0.978	90.43	0.00	2 00	1 56	4393	5/	14 36.05	0.024	0.025	-65
-	95643	4776.80		0.36	475 40	4800.0	330.5	4 2121	00 0	.01	0.01	1.00	0.980	R3.25	0.00	7 0.9	0 55	E 423.2	.54	40. 35.75	0.026	0.028	-58
	9.8718	4877 52		0.38	473.84	4900.00	324.9	2 207.	71 0	.01	0.01	0.00	0.944	15.79	0.00	8 00	0 55	3 408.9	-5.3	37 36.63	0.027	0.029	-53
	10.1847	4978.±0		0.40	470.34	5000.0) JI96	5 208	ъ о	LUN .	0.01	0.00	0,929	88.42	0.01	s 0,0	0 5,5	0 395 8	-6,3	36.52	0,025	0.030	-50.
	10,5030	5079.14		0.42	465.86	5100.0	314.6	5 200	10 D	.81	0.61	1 00	0.914	91 14	0.00	6 00	1 Fi 4	7 383.5	53	35.44	0.029	.0.031	48
- 1	10.8256	5180.02		0.44	450.37	5200.0	309.8	9 196.0	0 0	01	0.01	0.00	0.900	93.96	0.66	3 00	0. 54	4 371.9	-5.2	29 36.36	0.030	0.032	-458

Figura 68 – Aba Tabular Results

APÊNDICE E – TABELA DE TIRO DO FOGUETE SS-09 TS PARA 6-DOF - PRODAS

PRODAS - [_P2K575255SS_09_TS_Finish_Cap_Crespo.pr3 - Ballistic Tables]

		the state of the second second	and the second							
_	Banne	Remaining/	TimeOfFlight	INF	AnglaD(Dec	KineticEner	Drop	Doff	VartesHaigh	VartauRoni
Inits	m	m/sec	sec	Gunner Mil	dea	kiloioule	dea	dea	m	m
Red=Lock	1	(11.000		crown tor 140	409	raideate	aug	409		
	0.0	95.60	0.0000	0.00	0.00	54.4	0.00	0.00	0.0	0.
	100.0	363.86	0.4345	12.51	0.35	668.3	0.70	0.00	0.2	44.
	200.0	542.05	0.6627	17.19	0.38	1343.8	0.97	0.00	0.5	77.
	300.0	697.88	0.8274	19.93	0.37	2061.0	1.12	0.00	0.7	117.
	400.0	811.20	0.9551	21.76	0.36	2610.2	1.22	0.00	1.0	146.
	500.0	802.17	1.0715	23.13	0.37	2492.3	1.30	0.00	1.2	180.
	600.0	786.85	1.2096	24.47	0.39	2398.0	1.38	0.00	1.4	217.
	700.0	774.02	1.3282	25.49	0.42	2320.4	1.43	0.00	1.7	256.
	800.0	759.57	1.4653	26.58	0.46	2234.6	1.50	0.00	2.0	302.
	900.0	746.48	1.5928	27.54	0.50	2158.3	1.55	0.00	2.3	356.
	1000.0	732.67	1.7310	28.54	0.55	2079.2	1.61	0.00	2.7	419.
	1100.0	719.01	1.8716	29.52	0.60	2002.3	1.66	0.00	3.1	484.
	1200.0	706.07	2.0085	30.46	0.65	1930.9	1.71	0.00	3.6	545.
	1300.0	692.80	2.1529	31.45	0.71	1859.0	1.77	0.00	4.1	606.
	1400.0	679.70	2.2998	32.43	0.78	1789.4	1.82	0.00	4.8	667.
	1500.0	667.02	2.4460	33.41	0.84	1723.3	1.88	0.00	5.4	726.
	1600.0	654.17	2.5987	34.43	0.92	1657.5	1.94	0.00	6.2	786.
	1700.0	641.92	2.7486	35.42	0.99	1596.0	1.99	0.00	7.0	843.
	1800.0	629.40	2.9065	36.47	1.07	1534.3	2.05	0.00	7.9	903.
	1900.0	616.96	3.0684	37.55	1.15	1474.3	2.11	0.00	8.9	962.
	2000.0	604.64	3.2340	38.66	1.24	1416.0	2.17	0.00	9.9	1022.
	2100.0	592.44	3,4033	39.79	1.34	1359.4	2.24	0.00	11.1	1082.
	2200.0	581.36	3.5618	40.85	1.43	1309.1	2.30	0.00	12.3	1137.
	2300.0	569.47	3.7375	42.04	1.53	1256.0	2.36	0.00	13.6	1198.
	2400.0	557.67	3.9176	43.26	1.64	1204.6	2.43	0.00	15.1	1258.
	2500.0	546.01	4,1019	44.52	1.76	1154.7	2.50	0.00	16.7	1319
	2600.0	534.49	4.2903	45.81	1.88	1106.5	2.58	0.00	18.4	1380
	2700.0	523.13	4 4827	47.13	2.01	1060.0	2.65	0.00	20.2	1441
	2800.0	511.95	4 6790	48.50	215	1015.1	2.73	0.00	22.2	1503
	2900.0	500.95	4 8790	49.89	2.10	972.0	2.81	0.00	24.3	1565
	3000.0	491.03	5.0656	51.21	2.43	933.9	2.88	0.00	26.4	1621
	3100.0	480.23	5 2758	52.70	2.40	893.2	2.00	0.00	28.8	1684
	3200.0	469.60	5 4907	54.23	2.30	854.1	3.05	0.00	31 /	1747
	3300.0	459.00	5 7101	55.23	2.73	816.5	314	0.00	34.1	1810
	3400.0	448.89	5 9329	57.43	311	780.5	3.22	0.00	37.1	1874
	3500.0	438.85	6 1619	59 10	3.30	745.9	3 22	0.00	40.2	1937
	3600.0	429.79	6 3759	60.68	3.49	715 4	3.02	0.00	43.2	1996
	3700.0	420.70	6.5730 6.6149	62 /F	3 70	£02.2	2.51	0.00	45.2	2061
	3900.0	A10 A2	6.0143 F.9597	EA 29	3.00	652.5	3,63	0.00	50.6	2001.
	2000.0	410.43 /IND OC	7 1100	04.23 CC 10		602.0 £00.7	3.02	0.00	54.0	2123.
	1000.0	201.00	7 2650	C0.10	1.17	59/ 0	3.72	0.00	59.0	2131.
	4000.0	202.00	7,0000	70.04	4.42	567.0	2.03	0.00	00.0	2200.
-	4700.0	272 77	7 0011	70.04	4.07	5/11	J.04	0.00	00.1 CO 0	2010.
	4200.0	264 70	2 1557	74.12	9.34	515.4	4.00	0.00	721	2363.
	4300.0	304.70	0.1007	74.20	0.24 E FE	101 0	4.10	0.00	70 5	2402.
-	4400.0	300.13	0.430/	70.00	0.00	431.2	4.30	0.00	0.01	2018.
-	4000.0	340.03	0.7230	10.00	0.07	403.3	4.43	0.00	04.3	2005.
-	4600.0	340.91	3.0092	81.11	6.20	400.1	4.06	0.00	30.2	2601.
	4/00.0	334.30	3.3084	00.10	0.00	433.0	4.70	0.00	36.7	2719.
	4800.0	328.53	3.6131	86.10	6.93	418.0	4.84	0.00	103.6	2788.
	4900.0	323.17	3.9228	88.72	7.31	404.5	4.99	0.00	110.9	2856.
	5000.0	318.15	10.2336	91.40	7.69	392.0	5.14	0.00	118.5	2924.
	5100.0	313.32	10.5538	94.19	8.10	360.2	5.30	0.00	126.6	2992.
	5200.0	31872	110/03	11000	111 111					

Figura 69 – Aba Results Tables

ANEXO A – FORMATTED RESULTS - COEFICIENTES AERODINÂMICOS - PRODAS

{LANDSCAPE}

SS_09_TS_Finish_Cap_Crespo.pr3 - 0 07/12/2022 16:10 Finner2000 Version 3.0.0

PROJECTILE BASIC PAR	AMETERS						
	mm	Calibe	er				
Reference Diameter	70.61	1.00	90				
Reference CG	634.18	8.98	31				
Total Length w/fins	1366.73	19.35	55				
Body Length wo/fins	1366.73	19.35	55				
Ogive Length	194.79	2.75	59				
Ogive Radius	432.9	6.	.1				
Meplat Diameter	2.00	8.8	28				
Boattail Length	0 00	0.00	20				
Roattail Diameter	0.00	0.00	20				
Room Length	0.00	0.00	20				
Boom Diameter	0.00	0.00	20				
boom bibliccer	0.00	0.00					
			Band	or Thread/Groo	ve Set		
			1	2	3		
Thread (Band) Length	6 . I .	mm	5.207	0.000	0.000		
Thread (Band) Major	Dia	mm	0.000	0.000	0.000		
Thread Minor Diamete	r	mm	0.000	0.000	0.000		
Thread Pitch Diamete	r	mm	59.284	0.000	0.000		
Thread Pitch		mm	0.000	0.000	0.000		
Dist Lead Thread (Ba	ind)	mm	1264.980	0.000	0.000		
			1	Fin Set	2		
Fig Tune			Pact	2	2		
Han hound fins			NECL				
Wrap-Around Fins			Tes				
T-Paus on Fin Tips			NO				
Number of Fin Blades		dia.	3	0	0		
Fin Cant Angle		deg	1.00	0.00	0.00		
Fin Root Chord		mm	82.296	0.000	0.000		
Fin Tip Chord		mm	82,296	0.000	0.000		
Fin Span		mm	173.533	0.000	0.000		
Fin Mid Cord Thickne	SS	mm	2.388	0.000	0.000		
Fin Leading Edge Thi	ckness	mm	0.254	0.000	0.000		
Fin Lead Taper Lengt	h	mm	12.954	0.000	0.000		
Fin Lead Cant Angle		deg	10,000	0.000	0.000		
Fin Trailing Edge Th	ickness	mm	2,388	0.000	0.000		
Fin Trailing Taper L	ength	mm	0.000	0.000	0.000		
Fin Trailing Cant An	gle	deg	0.000	0.000	0.000		
Proj. Dia. at Fin Ro	ot	mm	50.800	0.000	0.000		
Dist. Fin Lead Edge	fm Nose	mm	1256.800	0.000	0.000		
	Fin I	ceage /ray	t Matrix				
Stages	FILL 0	scuge/ cal	TE POULTA	Fin Set			
C. C			1	2	3	Total Cant	
1		Baseline	Yes	No	NO	1,787	
2			No	No	No	0,000	
-			No	No	No	0.000	
Apparant Fin Cant		deg	1.787	0.000	0.000	0.000	
	and the	S. Cash	10000	19402	0.000		
Aerod	lynamic (Form) Fac	tors				
Axial Force		1.00		Pitch Moment		1 89	
Forebody Drag (Pure	00)	1.00		Damning Mome	nt	1.00	
Normal Force	Un)	1.00		Magnus Morean	+	1.00	
Toducad Cide Canar		1.00		Toduced Side	Mamont	1.00	
Induced Side Force		0.00		Induced Side	h Moment	0.00	
induced Pitch Force		0.00		Induced Pitc	n moment	0.00	
induced Roll Moment		0.00		Side Moment	uue to pit	un 0.00	
Roll Damping Moment		1.00		Irim Angle	(degree	5) 0.00	
EWPAGE }							

Figura 70 – Aba Formatted Results

Aerodynamic Coefficients (with form factors applied) for Baseline Stage 1

SS_09_TS_Finish_Cap_Crespo.pr3 - 0 07/12/2022 16:10 Finner2000 Version 3.0.0

	CX0	CX2	CX4	CNa	CNa3	CPN	СҮра	CXfore	CXbase	CNQ
1.000	0.759	8.11	0.0	13.04	0.0	14.46	0.00	0.544	0.214	367.5
1.025	0.796	8.86	0.0	13.07	0.0	14.70	0.00	0.583	0.213	377.0
1.050	0.833	9.61	0.0	13.10	0.0	14.93	0.00	0.622	0.211	386.6
1,100	0.814	10.83	0.0	13.44	0.0	15.12	0.00	0.603	0.211	406.3
1.200	0.773	12.76	0.0	12.70	0.0	14.90	0.00	0.566	0.207	378.8
1.350	0.745	12.13	0.0	11.94	0.0	14.54	0.00	0.544	0.201	346.5
1.500	0.714	11.48	0.0	11.46	0.0	14.17	0.00	0.520	0.194	322.6
1.750	0.671	10.85	0.0	11,33	0.0	13.91	0.00	0.490	0.181	312.9
2.000	0.631	10.19	0.0	9.22	0.0	12.61	0.00	0.465	0.166	226.0
2.250	0.594	9.84	0.0	8.70	0.0	12.01	0.00	0.442	0.152	201.7
2.500	0.557	9.48	0.0	8.17	0.0	11.34	0.00	0.420	0.137	177.3
3.000	0.485	8.19	0.0	7.37	0.0	10.36	0.00	0.374	0.111	145.6
3.500	0.460	7.60	0.0	6.77	0.0	9.72	0.00	0.368	0.092	123.7
4.000	0.435	7.02	0.0	6.16	0.0	8.97	0.00	0.362	0.073	101.8
Mome	nts at Ba	aseline C	G = 8	8.98 Calib	ers from	n the Nos	e			
Mach	Cma	Cma3	Cma5	Cmq	Cmq2	Cnpa@1	Cnpa@3	Cnpa@5	Clp	Cld
1.000	-71.5	0.0	0.0	-2243.9	0.0	0.0	0.0	0.	-4.8	0.057
1.025	-74.7	0.0	0.0	-2299.5	0.0	0.0	0.0	0.	-4.8	0.058
1.050	-78.0	0.0	0.0	-2355.0	0.0	0.0	0.0	0.	-4.9	0.059
1.100	-82.5	0.0	0.0	-2491.0	0.0	0.0	0.0	0.	-5.0	0.061
1.200	-75.1	0.0	0.0	-2396.2	0.0	0.0	0.0	0.	-4.7	0.056
1.350	-66.3	0.0	0.0	-2288.7	0.0	0.0	0.0	0.	-4.2	0.051
1.500	-59.4	0.0	0.0	-2223.6	0.0	0.0	0.0	0.	-3.9	0.047
1.750	-55.9	0.0	0.0	-2206.6	0.0	0.0	0.0	0.	-3.8	0.046
2.000	-33.4	0.0	0.0	-1838.2	0.0	0.0	0.0	0.	-2.8	0.033
2.250	-26.4	0.0	0.0	-1740.0	0.0	0.0	0.0	0.	-2.5	0.030
2 500	-19.3	0.0	0.0	-1641.8	0.0	0.0	0.0	0.	-2.2	0.026
2.500	10 1	00	0.0	-1497.9	0.0	0.0	0.0	0.	-1.8	0.021
3.000	-10.1	0.0								
3.000	-10.1	0.0	0.0	-1384.4	0.0	0.0	0.0	0.	-1.6	0.018

The Effective Fin Cant is 1.79 degrees

Figura 71 – A	Aba Formatted	Results -	continuação
			0 0 0 0 0 0 0 2 0 0 0

Coeffic				Finner	2000 Ver	sion 3.0	.0
(s) Inclu	cients (with fo	rm facto	rs appli	ed) for	Baseline	Stage
CYga	CZga	Clga	Cmga	Cnga	Csm	Czd	Cmd
.000	0.0	0.0	0.00	0.0	0.0	0.00	0.00
.000	0.0	0.0	0.00	0.0	0.0	0.00	0.00
.000	0.0	0.0	0.00	0.0	0.0	0.00	0.00
.000	0.0	0.0	0.00	0.0	0.0	0.00	0.00
.000	0.0	0.0	0.00	0.0	0.0	0.00	0.00
.000	0.0	0.0	0.00	0.0	0.0	0.00	0.00
.000	0.0	0.0	0.00	0.0	0.0	0.00	0.00
.000	0.0	0.0	0.00	0.0	0.0	0.00	0.00
.000	0.0	0.0	0.00	0.0	0.0	0.00	0.00
.000	0.0	0.0	0.00	0.0	0.0	0.00	0.00
.000	0.0	0.0	0.00	0.0	0.0	0.00	0.00
.000	0.0	0.0	0.00	0.0	0.0	0.00	0.00
.000	0.0	0.0	0.00	0.0	0.0	0.00	0.00
.000	0.0	0.0	0.00	0.0	0.0	0.00	0.00
	s) Incli CYga 000 000 000 000 000 000 000 000 000 000 000 000 000	s) Included 1: CYga CZga .000 0.0 .000 0.0	s) Included 1: Yes 2 CYga CZga Clga 1.000 0.0 0.0 0.000 0.0 0.0 0.000 0.0 0.0 0.000 0.0 0.0 0.000 0.0 0.0 0.000 0.0 0.0 0.000 0.0 0.0 0.000 0.0 0.0 0.000 0.0 0.0 0.000 0.0 0.0 0.000 0.0 0.0 0.000 0.0 0.0 0.000 0.0 0.0 0.000 0.0 0.0 0.000 0.0 0.0 0.000 0.0 0.0 0.000 0.0 0.0	s) Included 1: Yes 2: No 3 CYga CZga Clga Cmga .0000 0.0 0.0 0.00 .0000 0.0 0.0 0.00 .0000 0.0 0.0 0.00 .0000 0.0 0.0 0.00 .0000 0.0 0.0 0.00 .0000 0.0 0.0 0.00 .0000 0.0 0.0 0.00 .0000 0.0 0.0 0.00 .0000 0.0 0.0 0.00 .0000 0.0 0.0 0.00 .0000 0.0 0.0 0.00 .0000 0.0 0.0 0.00 .0000 0.0 0.0 0.00 .0000 0.0 0.0 0.00 .0000 0.0 0.0 0.00 .0000 0.0 0.0 0.00 .0000 0.0 0.0	s) Included 1: Yes 2: No 3: No CYga CZga Clga Cmga Cmga Cnga .0000 0.0 0.0 0.00 0.00 0.0 .0000 0.0 0.0 0.00 0.0 0.00 0.0 .0000 0.0 0.0 0.00 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0	s) Included 1: Yes 2: No 3: No Cyga CZga Clga Cmga Cnga Csm .0000 0.0 0.00 0.00 0.0 0.00 .0000 0.0 0.00 0.00 0.0 0.0 .0000 0.0 0.00 0.00 0.0 0.0 .0000 0.0 0.00 0.00 0.0 0.0 .0000 0.0 0.00 0.00 0.0 0.0 .0000 0.0 0.00 0.00 0.0 0.0 .0000 0.0 0.00 0.00 0.0 0.0 .0000 0.0 0.00 0.00 0.0 0.0 .0000 0.0 0.00 0.00 0.0 0.0 .0000 0.0 0.00 0.00 0.0 0.0 .0000 0.0 0.00 0.00 0.0 0.0 .0000 0.0 0.0	s) Included 1: Yes 2: NO 3: NO CYga CZga Clga Cmga Cnga Csm Czd .0000 0.0 0.00 0.00 0.0 0.00

Fin Set Component Aerodynamic Coefficients (without form factors) The Baseline Stage (1) includes Fin Sets 1: Yes 2: No 3: No

	Mach	Cxbody	Cxgrv	Cxfin1	Cxfin2	Cxfin3	CNaB	CPNB	CNaF1	CPNF1	CNaF2	CPNF2	CNaF3	CPNF3
	1.000	0.528	0.012	0.218	0.000	0.000	2.91	2.86	10.13	17.80	0.00	0.00	0.00	0.00
	1.025	0.565	0.012	0.218	0.000	0.000	2.79	2.91	10.28	17.90	0.00	0.00	0.00	0.00
	1.050	0.602	0.012	0.219	0.000	0.000	2.67	2.96	10.43	18.00	0.00	0.00	0.00	0.00
	1.100	0.601	0.012	0.200	0.000	0.000	2.71	2.92	10.73	18.20	0.00	0.00	0.00	0.00
	1.200	0.586	0.012	0.175	0.000	0.000	2.79	2.86	9.91	18.29	0.00	0.00	0.00	0.00
	1.350	0.575	0.012	0.158	0.000	0.000	2.92	2.80	9.01	18.34	0.00	0.00	0.00	0.00
	1.500	0.558	0.012	0.145	0.000	0.000	3.07	2.75	8.38	18.35	0.00	0.00	0.00	0.00
	1.750	0.531	0.012	0.128	0.000	0.000	3.20	2.64	8.13	18.35	0.00	0.00	0.00	0.00
	2.000	0.502	0.012	0.117	0.000	0.000	3.36	2.54	5.87	18.36	0.00	0.00	0.00	0.00
	2.250	0.474	0.012	0.108	0.000	0.000	3.46	2.41	5.23	18.36	0.00	0.00	0.00	0.00
	2.500	0.446	0.012	0.099	0.000	0.000	3.56	2.28	4.60	18.36	0.00	0.00	0.00	0.00
	3.000	0.387	0.012	0.086	0.000	0.000	3.60	1.95	3.77	18.37	0.00	0.00	0.00	0.00
	3.500	0.368	0.012	0.080	0.000	0.000	3.56	1.94	3.21	18.37	0.00	0.00	0.00	0.00
	4.000	0.349	0.012	0.074	0.000	0.000	3.52	1.92	2.64	18.37	0.00	0.00	0.00	0.00
{NEWP	AGE }													

SS_09_TS_Finish_Cap_Crespo.pr3 - 0 07/12/2022 16:10 Finner2000 Version 3.0.0

Expressed in CD and CL Convention (CX And CN Force Coeffs repeated for convenience) Aerodynamic Coefficients (with form factors applied) for Baseline Stage 1 Fin Set(s) Included 1: Yes 2: No 3: No

Μ	ach	CDO	CD2	CLa	CLa3	CXO	CX2	CNa	CNa3
	1.00	0.759	21.16	12.29	-8.11	0.759	8.11	13.04	0.00
	1.02	0.796	21.94	12.28	-8.86	0.796	8.86	13.07	0.00
	1.05	0.833	22.71	12.27	-9.61	0.833	9.61	13.10	0.00
	1.10	0.814	24.27	12.62	-10.83	0.814	10.83	13.44	0.00
	1.20	0.773	25.46	11.93	-12.76	0.773	12.76	12.70	0.00
	1.35	0.745	24.06	11.19	-12.13	0.745	12.13	11.94	0.00
	1.50	0.714	22.93	10.74	-11.48	0.714	11.48	11.46	0.00
	1.75	0.671	22.18	10.66	-10.85	0.671	10.85	11.33	0.00
	2.00	0.631	19.41	8.59	-10.19	0.631	10.19	9.22	0.00
	2.25	0.594	18.53	8.10	-9.84	0.594	9.84	8.70	0.00
	2.50	0.557	17.65	7.61	-9.48	0.557	9.48	8.17	0.00
	3.00	0.485	15.57	6.89	-8.19	0.485	8.19	7.37	0.00
	3.50	0.460	14.37	6.31	-7.60	0.460	7.60	6.77	0.00

Figura 72 - Aba Formatted Results - continuação

SS_09_TS_Finish_Cap_Crespo.pr3 - 0 07/12/2022 16:10 Finner2000 Version 3.0.0

Stage 1 has 1 sets of fins deployed Fin Set(s) Included 1: Yes 2: No 3: No

	Aero	dynamic	Force Co	pefficien	ts (wi	th form	factor	s applied	(t		
Mach	CX	CX2	CZa	CPZ	CYb	CPY	CY	pa CZO	d c	Xf (xb
 1.00	0.759	8.11	13.04	14.46	13.04	14.46	0.	0.0	00 0.	544 0	214
1.02	0.796	8.86	13.07	14.70	13.07	14.78	0.	88 8.8	30 0.	583 0.	213
1.05	0.833	9.61	13.10	14.93	13.10	14.93	0.	99.9	00 0.	622 0.	211
1.10	0.814	10.83	13.44	15.12	13.44	15.12	0.	0.0	90 0.	603 0.	211
1.20	0.773	12.76	12.70	14.90	12.70	14.98	0.0	0.0	90 0.	566 0.	207
1.35	0.745	12.13	11.94	14.54	11.94	14.54	0.	80 8.0	90 0.	544 0.	201
1.50	0.714	11.48	11.46	14.17	11.46	14.17	0.	0.0	30 0.	520 0.	194
1.75	0.671	10.85	11.33	13.91	11.33	13.91	0.	0.9	90 0.	490 0.	181
2.00	0.631	10.19	9.22	12.61	9.22	12.61	0.	0.0	.0 0	465 0.	166
2.25	0.594	9.84	8.70	12.01	8.70	12.01	0.	0.0	00 0.	442 0.	152
2.50	0.557	9.48	8.17	11.34	8.17	11.34	0.	0.0	.0 98	420 0.	137
3.00	0.485	8.19	7.37	10.36	7.37	10.36	0.	0.0	90 0.	374 0.	111
3.50	0.460	7.60	6.77	9.72	6.77	9.72	0.	0.0	00 0.	368 0.	092
4.00	0.435	7.02	6.16	8.97	6.16	8.97	0.	0.0	90 Ø.	362 0	073
	Aero	dynamic	Moment (oefficie	nts (w	ith form	facto	rs applie	ed)		
Mach	Cma	Cnb	Cmq	Cnr	Cnpa@1	Cnpa@2	Cnpa@5	Cnpa@10	Cmd	Clp	Cld
 1.00	-71.49	-71.49	-2243.9	-2243.9	0.00	0.00	0.00	0.00	0.000	-4.753	0.0573
1.02	-74.72	-74.72	-2299.5	-2299.5	0.00	0.00	0.00	0.00	0.000	-4.821	0.0581
1.05	-77.97	-77.97	-2355.0	-2355.0	0.00	0.00	0.00	0.00	0.000	-4.890	0.0590
1.10	-82.49	-82.49	-2491.0	-2491.0	0.00	0.00	0.00	0.00	0.000	-5.027	0.0607
1.20	-75.14	-75.14	-2396.2	-2396.2	0.00	0.00	0.00	0.00	0.000	-4.651	0.0560
1.35	-66.29	-66.29	-2288.7	-2288.7	0.00	0.00	0.00	0.00	0.000	-4.236	0.0510
1.50	-59.41	-59.41	-2223.6	-2223.6	0.00	0.00	0.00	0.00	0.000	-3.942	0.0474
1.75	-55.87	-55.87	-2206.6	-2206.6	0.00	0.00	0.00	0.00	0.000	-3.817	0.0460
2.00	-33.42	-33.42	-1838.2	-1838.2	0.00	0.00	0.00	0.00	0.000	-2.772	0.0332
2.25	-26.36	-26.36	-1740.0	-1740.0	0.00	0.00	0.00	0.00	0.000	-2.483	0.0296
2.50	-19.28	-19.28	-1641.8	-1641.8	0.00	0.00	0.00	0.00	0.000	-2.193	0.0260
3.00	-10.15	-10.15	-1497.9	-1497.9	0.00	0.00	0.00	0.00	0.000	-1.813	0.0214
3.50	-5.03	-5.03	-1384.4	-1384.4	0.00	0.00	0.00	0.00	0.000	-1.552	0.0181
4.00	0.09	0.09	-1270.8	-1270.8	0.00	0.00	8.00	0.00	0.000	-1.292	0.0149

Figura 73 - Aba Formatted Results - continuação

ANEXO B – PLOTTED RESULTS - PRODAS

Figura 74 – Aba Plotted Results - Zero Yaw Drag Aerodynamics

Figura 75 – Aba Plotted Results - Zero Yaw Drag $(sin^2 A)$ Aerodynamics

Figura 76 – Aba Plotted Results - Normal Force Aerodynamics

Figura 77 – Aba Plotted Results - Center of Pressure Normal Force Aerodynamics

Figura 78 – Aba $\mathit{Plotted}\ \mathit{Results}$ - Forebody Drag Aerodynamics

Figura 79 – Aba Plotted Results - Induced Moment Force Aerodynamics

89

Figura 80 – Aba $\mathit{Plotted}\ \mathit{Results}$ - Fin Drag Aerodynamics

Figura 81 – Aba Plotted Results - Pitch Moment

90

Figura 82 – Aba Plotted Results - Pitch Damping Moment

Figura 83 – Aba Plotted Results - Roll Damping Moment

Figura 84 – Aba Plotted Results - Roll Moment

Figura $85-Aba\ Plotted\ Results$ - Fin Drag

Figura 86 – Aba $\mathit{Plotted}\ \mathit{Results}$ - Fin Normal Force

Figura 87 – Aba Plotted Results - Fin Roll Moment

Figura 88 – Aba Plotted Results - Fin Roll Damping

ANEXO C - TABELA DE TIRO COM 4-DOF - PRODAS

_P2K575255SS_09_TS_Finish_Cap_Cr - 0 06/29/2022 16:37 BallisticMatch2000 Version 4.1.0

	Range	Remaining	Time	Angle	e of	Ang	le of	Kinetic	Dron	Drift	Vertex Height	Vertex
	m	m/sec	sec	deg.	G-mils	deg.	G-mils	kilojo	G-mils	G-mils	m	m
-	0.	95.6	0.000	0.00	0.00	0.00	0.00	54.4	0.000	0.000	0.0	0.0
	100.	364.9	0.436	0.87	15.49	0.37	6.58	671.6	15.494	-0.005	0.2	40.4
	200.	536.5	0.656	1.13	20.09	0.39	6.86	1320.2	20.091	-0.008	0.5	76.8
	300.	686.6	0.816	1.28	22.83	0.38	6.76	2006.0	22.832	-0.009	0.7	111.0
	400.	812.2	0.960	1.40	24.93	0.37	6.56	2610.2	24.927	-0.011	1.0	148.0
	500.	802.0	1.076	1.48	26.30	0.37	6.63	2491.1	26.298	-0.012	1.2	179.6
	600.	788.6	1.196	1.55	27.49	0.39	6.95	2408.7	27.487	-0.013	1.4	213.6
	700.	774.0	1.331	1.61	28.66	0.42	7.50	2320.2	28.664	-0.014	1.7	255.1
	800.	759.4	1.469	1.67	29.77	0.46	8.19	2233.8	29.767	-0.015	2.0	303.5
	900.	746.7	1.594	1.73	30.71	0.50	8.90	2159.3	30.706	-0.016	2.3	354.3
	1000.	732.8	1.733	1.78	31.71	0.55	9.77	2079.7	31.715	-0.017	2.7	419.2
	1100.	719.9	1.865	1.84	32.65	0.60	10.66	2007.2	32.652	-0.018	3.1	480.6
	1200.	706.4	2.008	1.89	33.64	0.66	11.67	1932.8	33.638	-0.019	3.6	543.7
	1300.	693.0	2.153	1.95	34.63	0.72	12.75	1860.3	34.630	-0.020	4.2	605.9
	1400.	680.7	2.291	2.00	35.57	0.78	13.83	1794.6	35.566	-0.021	4.7	663.4
	1500.	667.7	2.441	2.06	36.57	0.85	15.04	1726.7	36.570	-0.022	5.4	723.8
	1600.	654.8	2.594	2.11	37.60	0.92	16.32	1660.6	37.596	-0.023	6.2	784.1
	1700.	642.0	2.751	2.17	38.64	1.00	17.69	1596.2	38.644	-0.025	7.0	844.4
	1800.	629.3	2.911	2.23	39.71	1.08	19.14	1533.6	39.714	-0.026	7.9	904.6
	1900.	618.1	3.057	2.29	40.69	1.15	20.50	1479.6	40.687	-0.027	8.8	958.4
	2000.	605.7	3.222	2.35	41.80	1.24	22.09	1421.0	41.796	-0.028	9.9	1018.3
	2100.	593.5	3.392	2.42	42.94	1.34	23.78	1364.1	42.936	-0.030	11.1	1078.5
	2200.	581.3	3.565	2.48	44.11	1.44	25.56	1308.8	44.107	-0.031	12.4	1138.9
	2300.	569.3	3.743	2.55	45.31	1.54	27.44	1255.2	45.310	-0.032	13.7	1199.6
	2400.	557.4	3.924	2.62	46.54	1.65	29.41	1203.5	46.543	-0.034	15.2	1260.6
	2500.	545.7	4.109	2.69	47.81	1.77	31.50	1153.5	47.808	-0.035	16.8	1321.6
	2600.	534.2	4.297	2.76	49.10	1.89	33.68	1105.4	49.104	-0.037	18.6	1382.7
	2700.	524.2	4.467	2.83	50.28	2.01	35.71	1064.2	50.282	-0.038	20.2	1437.0
	2800.	512.9	4.665	2.91	51.66	2.15	38.14	1019.0	51.655	-0.039	22.2	1499.0
	2900.	501.8	4.866	2.99	53.07	2.29	40.69	975.2	53.069	-0.041	24.3	1561.3
	3000.	490.8	5.072	3.07	54.52	2.44	43.38	933.1	54.524	-0.043	26.6	1623.8

Figura 89 – Aba Formatted Results

_P2K5752555S_09_T5_Finish_Cap_Cr - 0 06/29/2022 16:37 BallisticMatch2000 Version 4.1.0

				***** 8	allisti	c Match T	able Outp	ut *****	C		
	Kemaining	.	Angle	e ot	Ang	Le or	Kinetic		D . C	Vertex	Vertex
Kange	velocity	lime	Eleva	tion	De	scent	Energy	Drop	Drift	Height	Kange
m	m/sec	sec	aeg.	G-mils	aeg.	G-mils	к11030	G-m115	G-m115	m	m
3100.	480.0	5.282	3.15	56.02	2.60	46.20	892.6	56.019	-0.044	29.0	1686.5
3200.	469.5	5.497	3.24	57.55	2.77	49.17	853.6	57.554	-0.046	31.6	1749.4
3300.	459.1	5.715	3.33	59.13	2.94	52.28	816.2	59.130	-0.048	34.4	1812.3
3400.	449.8	5.916	3.41	60.60	3.11	55.24	783.7	60.596	-0.049	37.0	1869.4
3500.	439.7	6.145	3.50	62.27	3.30	58.69	748.9	62.273	-0.051	40.1	1933.3
3600.	429.8	6.379	3.60	64.00	3.51	62.32	715.4	64.005	-0.053	43.5	1997.6
3700.	420.0	6.618	3.70	65.79	3.72	66.15	683.3	65.789	-0.055	47.0	2062.1
3800.	410.4	6.862	3.80	67.63	3.95	70.17	652.5	67.628	-0.057	50.8	2126.9
3900.	401.0	7.111	3.91	69.52	4.19	74.40	622.9	69.520	-0.059	54.8	2191.9
4000.	392.2	7.352	4.01	71.36	4.42	78.59	595.9	71.360	-0.060	58.9	2253.4
4100.	383.0	7.613	4.13	73.38	4.69	83.29	568.1	73.383	-0.062	63.4	2319.3
4200.	373.9	7.881	4.25	75.47	4.96	88.25	541.4	75.474	-0.065	68.3	2385.6
4300.	364.9	8.156	4.37	77.63	5.26	93.48	515.7	77.633	-0.067	73.4	2452.2
4400.	356.2	8.436	4.49	79.86	5.57	98.98	491.5	79.859	-0.069	78.8	2519.0
4500.	348.5	8.713	4.62	82.09	5.88	104.58	470.3	82.086	-0.071	84.4	2584.0
4600.	341.0	9.007	4.75	84.47	6.22	110.65	450.5	84.469	-0.074	90.6	2651.6
4700.	334.5	9.306	4.89	86.93	6.58	116.98	433.3	86.932	-0.076	97.1	2719.5
4800.	328.6	9.610	5.03	89.47	6.95	123.54	418.3	89.475	-0.079	104.0	2787.6
4900.	323.4	9.914	5.18	92.06	7.32	130.21	405.0	92.057	-0.081	111.1	2854.8
5000.	318.3	10.229	5.33	94.77	7.72	137.22	392.4	94.774	-0.084	118.8	2923.4
5100.	313.4	10.550	5.49	97.58	8.13	144.46	380.5	97.581	-0.087	127.0	2992.3
5200.	308.9	10.870	5.65	100.43	8.54	151.78	369.6	100.426	-0.090	135.5	3060.0
5300.	304.5	11.199	5.82	103.40	8.97	159.42	359.1	103.403	-0.093	144.6	3128.9
5400.	300.3	11.534	5.99	106.48	9.41	167.29	349.2	106.476	-0.096	154.1	3197.7
5500.	296.2	11.875	6.17	109.64	9.87	175.38	339.9	109.644	-0.099	164.2	3266.6
5600.	292.3	12.221	6.35	112.91	10.33	183.69	331.0	112.907	-0.102	174.8	3335.4
5700.	288.6	12.572	6.54	116.27	10.81	192.22	322.6	116.266	-0.106	186.0	3404.1
5800.	285.0	12.927	6.73	119.72	11.30	200.97	314.6	119.721	-0.109	197.7	3472.6
5900.	281.6	13.288	6.93	123.27	11.81	209.92	307.0	123.271	-0.113	210.0	3540.9
6000.	278.3	13.648	7.14	126.85	12.31	218.92	300.0	126.855	-0.116	222.6	3607.7
6100.	275.1	14.019	7.35	130.60	12.84	228.31	293.2	130.605	-0.120	236.1	3675.5

Figura 90 – Aba Formatted Results - continuação

_P2K5752555S_09_TS_Finish_Cap_Cr - 0 06/29/2022 16:37 BallisticMatch2000 Version 4.1.0

				**** B	allisti	c Match T	able Outp	ut *****			
	Remaining		Angle	of	Ang	le of	Kinetic			Vertex	Vertex
Range	Velocity	Time	Eleva	tion	De	scent	Energy	Drop	Drift	Height	Range
m	m/sec	sec	deg.	G-mils	deg.	G-mils	kilojo	G-mils	G-mils	m	m
 6200.	272.1	14.396	7.56	134.46	13.38	237.90	286.7	134.456	-0.124	250.2	3743.0
6300.	269.1	14.777	7.79	138.41	13.93	247.71	280.4	138.407	-0.128	264.9	3810.1
6400.	266.2	15.164	8.01	142.46	14.50	257.73	274.4	142.458	-0.132	280.3	3876.8
6500.	263.4	15.555	8.25	146.61	15.07	267.96	268.7	146.610	-0.136	296.3	3943.1
6600.	260.7	15.944	8.48	150.78	15.65	278.18	263.3	150.778	-0.141	312.7	4007.5
6700.	258.1	16.346	8.73	155.14	16.25	288.85	258.0	155.141	-0.145	330.1	4073.0
6800.	255.5	16.754	8.98	159.61	16.86	299.73	252.9	159.612	-0.150	348.3	4138.0
6900.	253.1	17.167	9.24	164.19	17.48	310.83	248.0	164.192	-0.154	367.2	4202.4
7000.	250.7	17.586	9.50	168.88	18.12	322.13	243.4	168.881	-0.159	386.8	4266.3
7100.	248.4	18.010	9.77	173.68	18.77	333.65	239.0	173.678	-0.164	407.3	4329.7
7200.	246.2	18.433	10.04	178.51	19.42	345.20	234.8	178.510	-0.169	428.1	4391.6
7300.	244.1	18.869	10.32	183.54	20.09	357.16	230.8	183.541	-0.174	450.2	4454.0
7400.	242.0	19.311	10.61	188.69	20.77	369.33	226.9	188.689	-0.180	473.1	4516.0
7500.	240.1	19.759	10.91	193.96	21.47	381.71	223.2	193.957	-0.185	496.9	4577.5
7600.	238.2	20.213	11.21	199.34	22.18	394.29	219.8	199.343	-0.191	521.5	4638.8
7700.	236.4	20.667	11.52	204.78	22.89	406.91	216.5	204.782	-0.196	546.8	4698.9
7800.	234.7	21.134	11.84	210.42	23.62	419.91	213.4	210.424	-0.202	573.3	4759.8
7900.	233.1	21.607	12.16	216.20	24.36	433.12	210.4	216.195	-0.208	600.8	4820.5
8000.	231.5	22.087	12.49	222.10	25.12	446.51	207.6	222.097	-0.214	629.3	4881.1
8100.	230.0	22.568	12.83	228.06	25.87	459.94	205.0	228.063	-0.221	658.5	4941.0
8200.	228.6	23.062	13.18	234.24	26.65	473.73	202.5	234.241	-0.227	689.1	5001.5
8300.	227.3	23.563	13.53	240.56	27.43	487.69	200.1	240.562	-0.234	720.9	5062.0
8400.	226.1	24.071	13.90	247.03	28.23	501.84	198.0	247.026	-0.241	753.8	5122.5
8500.	224.9	24.581	14.26	253.57	29.03	516.00	195.9	253.569	-0.247	787.5	5182.4
8600.	223.8	25.104	14.64	260.34	29.84	530.50	194.1	260.339	-0.255	822.8	5242.8
8700.	222.8	25.636	15.03	267.27	30.67	545.16	192.3	267.267	-0.262	859.4	5303.3
8800.	221.9	26.175	15.43	274.35	31.50	559.97	190.7	274.354	-0.269	897.3	5363.7
8900.	221.1	26.718	15.84	281.54	32.33	574.80	189.3	281.541	-0.277	936.2	5423.5
9000.	220.3	27.275	16.25	288.98	33.18	589.92	188.0	288.976	-0.285	976.9	5484.0
9100.	219.6	27.841	16.68	296.59	34.04	605.19	186.8	296.588	-0.293	1019.1	5544.4
9200.	219.0	28,411	17.12	304.31	34,90	620.44	185.8	304.310	-0.301	1062.5	5604.1

Figura 91 – Aba Formatted Results - continuação

_P2K575255SS_09_TS_Finish_Cap_Cr - 0 06/29/2022 16:37 BallisticMatch2000 Version 4.1.0

	Remaining		Angle	of	Ang	le of	Kinetic			Vertex	Vertex
Range	Velocity	Time	Eleva	tion	De	scent	Energy	Drop	Drift	Height	Range
m	m/sec	sec	deg.	G-mils	deg.	G-mils	kilojo	G-mils	G-mils	m	m
9300.	218.5	28.997	17.57	312.31	35.77	635.99	184.8	312.307	-0.309	1107.9	5664.5
9400.	218.0	29.593	18.03	320.50	36.66	651.67	184.1	320.505	-0.318	1155.0	5724.8
9500.	217.6	30.195	18.50	328.83	37.54	667.32	183.4	328.832	-0.327	1203.5	5784.5
9600.	217.3	30.813	18.98	337.47	38.43	683.25	182.9	337.466	-0.336	1254.3	5844.8
9700.	217.1	31.444	19.48	346.33	39.34	699.31	182.6	346.330	-0.346	1307.0	5905.0
9800.	217.0	32.081	19.99	355.35	40.24	715.33	182.3	355.351	-0.355	1361.4	5964.6
9900.	216.9	32.738	20.52	364.72	41.15	731.63	182.2	364.722	-0.365	1418.5	6024.7
10000.	216.9	33.408	21.06	374.36	42.08	748.03	182.2	374.360	-0.376	1477.9	6084.7
10100.	217.0	34.088	21.61	384.20	43.00	764.41	182.4	384.202	-0.386	1539.2	6144.1
10200.	217.2	34.791	22.19	394.45	43.93	781.06	182.6	394.446	-0.397	1603.8	6204.0
10300.	217.4	35.504	22.78	404.91	44.87	797.66	183.1	404.911	-0.409	1670.6	6263.1
10400.	217.7	36.244	23.39	415.85	45.82	814.57	183.6	415.847	-0.420	1741.1	6322.7
10500.	218.1	36.995	24.02	427.04	46.77	831.43	184.3	427.041	-0.433	1814.2	6381.4
10600.	218.6	37.778	24.68	438.79	47.74	848.65	185.2	438.791	-0.446	1891.7	6440.0
10700.	219.2	38.577	25.36	450.86	48.70	865.83	186.1	450.863	-0.459	1972.3	6498.8
10800.	219.9	39.413	26.08	463.60	49.69	883.42	187.3	463.603	-0.473	2058.3	6557.5
10900.	220.7	40.271	26.82	476.76	50.68	901.05	188.6	476.764	-0.487	2148.1	6615.1
11000.	221.5	41.175	27.60	490.75	51.70	919.17	190.1	490.747	-0.503	2244.7	6673.6
11100.	222.5	42.107	28.42	505.28	52.73	937.35	191.8	505.279	-0.519	2346.1	6729.6
11200.	223.6	43.100	29.30	520.90	53.79	956.18	193.6	520.904	-0.537	2456.5	6786.5
11300.	224.8	44.137	30.23	537.34	54.86	975.25	195.7	537.344	-0.556	2574.0	6842.0
11400.	226.1	45.244	31.22	555.05	55.97	994.99	198.1	555.053	-0.576	2702.0	6896.5
11500.	227.7	46.459	32.33	574.70	57.15	1015.94	200.8	574.703	-0.599	2845.7	6950.8
11600.	229.4	47.779	33.54	596.25	58.38	1037.82	203.9	596.254	-0.624	3005.2	7003.0
11700.	231.5	49.276	34.93	620.99	59.72	1061.68	207.5	620.992	-0.654	3190.6	7053.2
11800.	233.8	51.012	36.57	650.07	61.21	1088.17	211.8	650.070	-0.689	3411.2	7098.9
11900.	237.4	53.542	39.00	693.26	63.26	1124,61	218.3	693.257	-0.743	3743.7	7140.6

Figura 92 – Aba $\mathit{Formatted}\ \mathit{Results}$ - continuação

ANEXO D - TABELA DE TIRO COM 6-DOF - PRODAS

-

.

_P2K57525555_09_TS_Finish_Cap_Cr - 0 06/29/2022 16:41 BallisticMatch2000 Version 4.1.0

				**** B	allisti	c Match T	able Outp	ut *****	•		
	Remaining		Angle	of	Ang	le of	Kinetic			Vertex	Vertex
Range	Velocity	Time	Eleva	tion	De	scent	Energy	Drop	Drift	Height	Range
m	m/sec	sec	deg.	G-mils	deg.	G-mils	kilojo	G-mils	G-mils	m	m
0.	95.6	0.000	0.00	0.00	0.00	0.00	54.4	0.000	0.000	0.0	0.0
100.	363.9	0.434	0.70	12.51	0.35	6.30	668.3	12.507	-0.004	0.2	44.6
200.	542.1	0.663	0.97	17.19	0.38	6.71	1343.8	17.186	-0.006	0.5	77.6
300.	697.9	0.827	1.12	19.93	0.37	6.66	2061.0	19.931	-0.008	0.7	117.0
400.	811.2	0.955	1.22	21.76	0.36	6.49	2610.2	21.761	-0.009	1.0	146.2
500.	802.2	1.072	1.30	23.13	0.37	6.54	2492.3	23.131	-0.010	1.2	180.9
600.	786.8	1.210	1.38	24.47	0.39	6.93	2398.0	24.475	-0.011	1.4	217.7
700.	774.0	1.328	1.43	25.49	0.42	7.42	2320.4	25.495	-0.012	1.7	256.1
800.	759.6	1.465	1.50	26.58	0.46	8.11	2234.6	26.583	-0.013	2.0	302.1
900.	746.5	1.593	1.55	27.54	0.50	8.83	2158.3	27.540	-0.014	2.3	356.0
1000.	732.7	1.731	1.61	28.54	0.55	9.69	2079.2	28.537	-0.015	2.7	419.7
1100.	719.0	1.872	1.66	29.52	0.60	10.63	2002.3	29.523	-0.016	3.1	484.5
1200.	706.1	2.008	1.71	30.46	0.65	11.60	1930.9	30.465	-0.017	3.6	545.1
1300.	692.8	2.153	1.77	31.45	0.71	12.68	1859.0	31.445	-0.018	4.1	606.8
1400.	679.7	2.300	1.82	32.43	0.78	13.82	1789.4	32.433	-0.019	4.8	667.7
1500.	667.0	2.446	1.88	33.41	0.84	15.00	1723.2	33.410	-0.021	5.4	726.5
1600.	654.2	2.599	1.94	34.43	0.92	16.28	1657.5	34.427	-0.022	6.2	786.4
1700.	641.9	2.749	1.99	35.42	0.99	17.59	1596.0	35.424	-0.023	7.0	843.9
1800.	629.4	2.907	2.05	36.47	1.07	19.01	1534.3	36.474	-0.024	7.9	903.2
1900.	617.0	3.068	2.11	37.55	1.15	20.51	1474.3	37.552	-0.025	8.9	962.9
2000.	604.6	3.234	2.17	38.66	1.24	22.10	1416.0	38.657	-0.027	9.9	1022.6
2100.	592.4	3.403	2.24	39.79	1.34	23.78	1359.4	39.789	-0.028	11.1	1082.7
2200.	581.4	3.562	2.30	40.85	1.43	25.41	1309.1	40.854	-0.029	12.3	1137.9
2300.	569.5	3.737	2.36	42.04	1.53	27.26	1256.0	42.039	-0.030	13.6	1198.0
2400.	557.7	3.918	2.43	43.26	1.64	29.21	1204.6	43.259	-0.032	15.1	1258.3
2500.	546.0	4.102	2.50	44.52	1.76	31.28	1154.7	44.515	-0.033	16.7	1319.4
2600.	534.5	4.290	2.58	45.81	1.88	33.46	1106.5	45.806	-0.035	18.4	1380.6
2700.	523.1	4.483	2.65	47.13	2.01	35.75	1060.0	47.133	-0.036	20.2	1441.9
2800.	511.9	4.679	2.73	48.50	2.15	38.16	1015.1	48.496	-0.038	22.2	1503.3
2900.	500.9	4.879	2.81	49.89	2.29	40.69	972.0	49.894	-0.039	24.3	1565.0
3000.	491.0	5.066	2.88	51.21	2.43	43.11	933.9	51.206	-0.041	26.4	1621.5
PAGE }											

Figura 93 – Aba Formatted Results

•

.

_P2K575255SS_09_TS_Finish_Cap_Cr - 0 06/29/2022 16:41 BallisticMatch2000 Version 4.1.0

	Remaining		Angle	of	Ang	le of	Kinetic			Vertex	Vertex
Range	Velocity	Time	Eleva	tion	De	scent	Energy	Drop	Drift	Height	Range
m	m/sec	sec	deg.	G-mils	deg.	G-mils	kilojo	G-mils	G-mils	m	m
3100.	480.2	5.276	2.96	52.70	2.58	45.93	893.2	52.696	-0.042	28.8	1684.3
3200.	469.6	5.491	3.05	54.23	2.75	48.89	854.1	54.230	-0.044	31.4	1747.5
3300.	459.1	5.710	3.14	55.81	2.93	52.00	816.5	55.808	-0.046	34.1	1810.7
3400.	448.9	5.934	3.23	57.43	3.11	55.28	780.5	57.431	-0.047	37.1	1874.3
3500.	438.8	6.162	3.32	59.10	3.30	58.72	745.9	59.099	-0.049	40.2	1937.9
3600.	429.8	6.376	3.41	60.68	3.49	62.03	715.4	60.675	-0.051	43.2	1996.6
3700.	420.0	6.615	3.51	62.45	3.70	65.84	683.3	62.453	-0.053	46.8	2061.0
3800.	410.4	6.860	3.62	64.29	3.93	69.86	652.5	64.289	-0.055	50.6	2125.9
3900.	401.0	7.110	3.72	66.18	4.17	74.09	622.7	66.183	-0.056	54.6	2191.1
4000.	391.6	7.366	3.83	68.13	4.42	78.53	594.0	68.135	-0.059	58.9	2256.6
4100.	382.9	7.613	3.94	70.04	4.67	82.97	567.8	70.042	-0.060	63.1	2318.8
4200.	373.8	7.881	4.06	72.12	4.94	87.90	541.1	72.124	-0.063	68.0	2385.4
4300.	364.8	8.156	4.18	74.28	5.24	93.12	515.4	74.277	-0.065	73.1	2451.9
4400.	356.1	8.437	4.30	76.50	5.55	98.62	491.2	76.503	-0.067	78.5	2518.9
4500.	348.1	8.724	4.43	78.80	5.87	104.39	469.3	78.801	-0.069	84.3	2586.1
4600.	340.9	9.009	4.56	81.11	6.20	110.28	450.1	81.111	-0.071	90.2	2651.8
4700.	334.4	9.308	4.70	83.57	6.56	116.59	433.0	83.566	-0.074	96.7	2719.7
4800.	328.5	9.613	4.84	86.10	6.93	123.14	418.0	86.104	-0.076	103.6	2788.0
4900.	323.2	9.923	4.99	88.72	7.31	129.90	404.5	88.725	-0.079	110.9	2856.2
5000.	318.2	10.234	5.14	91.40	7.69	136.79	392.0	91.397	-0.082	118.5	2924.0
5100.	313.3	10.554	5.30	94.19	8.10	144.00	380.2	94.193	-0.084	126.6	2992.7
5200.	308.7	10.879	5.46	97.08	8.52	151.42	369.1	97.080	-0.087	135.2	3062.1
5300.	304.4	11.205	5.63	100.01	8.94	158.95	358.8	100.013	-0.090	144.1	3129.9
5400.	300.2	11.540	5.80	103.07	9.38	166.78	349.0	103.073	-0.093	153.7	3198.5
5500.	296.1	11.880	5.98	106.23	9.83	174.84	339.6	106.228	-0.097	163.7	3267.3
5600.	292.2	12.226	6.16	109.48	10.30	183.12	330.7	109.481	-0.100	174.3	3336.1
5700.	288.5	12.576	6.35	112.83	10.78	191.62	322.3	112.829	-0.103	185.4	3404.8
5800.	284.9	12.932	6.54	116.27	11.27	200.34	314.4	116.274	-0.107	197.1	3473.2
5900.	281.5	13.294	6.74	119.82	11.77	209.26	306.8	119.816	-0.110	209.3	3541.3
6000.	278.2	13.659	6.94	123.45	12.28	218.40	299.7	123.453	-0.114	222.1	3609.4
6100.	275.0	14.024	7.15	127.13	12.80	227.59	293.0	127.128	-0.118	235.3	3675.9
PAGE }											

Figura 94 – Aba $\mathit{Formatted}$
 $\mathit{Results}$ - continuação

_P2K575255SS_09_TS_Finish_Cap_Cr - 0 06/29/2022 16:41 BallisticMatch2000 Version 4.1.0

Remaining			Angle of		Angle of		Kinetic		- 10	Vertex	Vertex
Range	Velocity	Time	Eleva	tion	De	scent	Energy	Drop	Drift	Height	Range
m 	m/sec	sec	deg.	G-mils	deg.	G-mils	kilojo	G-mils	G-mils	m	m
6200.	272.0	14.401	7.37	130.97	13.34	237.16	286.5	130.968	-0.121	249.4	3743.4
6300.	269.0	14.782	7.59	134.91	13.89	246.94	280.2	134.909	-0.125	264.1	3811.6
6400.	266.1	15.169	7.82	138.95	14.45	256.93	274.2	138.951	-0.130	279.4	3877.6
6500.	263.3	15.561	8.05	143.09	15.03	267.13	268.5	143.094	-0.134	295.4	3943.9
6600.	260.6	15.958	8.29	147.34	15.61	277.54	263.0	147.339	-0.138	312.1	4009.8
6700.	258.0	16.352	8.53	151.60	16.20	287.96	257.8	151.603	-0.142	329.1	4073.7
6800.	255.4	16.760	8.78	156.06	16.81	298.81	252.7	156.062	-0.147	347.2	4138.6
6900.	253.0	17.173	9.04	160.63	17.43	309.88	247.8	160.631	-0.152	366.0	4203.0
7000.	250.6	17.592	9.30	165.31	18.07	321.16	243.2	165.310	-0.157	385.6	4267.6
7100.	248.3	18.017	9.57	170.10	18.71	332.65	238.8	170.098	-0.161	406.0	4330.5
7200.	246.1	18.446	9.84	175.00	19.37	344.35	234.5	174.996	-0.166	427.2	4393.1
7300.	244.0	18.876	10.12	179.93	20.03	356.09	230.6	179.933	-0.172	448.8	4454.4
7400.	241.9	19.318	10.41	185.07	20.71	368.23	226.7	185.070	-0.177	471.6	4516.4
7500.	240.0	19.766	10.71	190.33	21.41	380.58	223.0	190.326	-0.182	495.3	4578.6
7600.	238.1	20.220	11.01	195.70	22.11	393.13	219.6	195.702	-0.188	519.9	4639.8
7700.	236.3	20.674	11.31	201.13	22.82	405.72	216.3	201.127	-0.193	545.1	4700.0
7800.	234.6	21.140	11.63	206.75	23.55	418.69	213.2	206.755	-0.199	571.5	4760.9
7900.	232.9	21.614	11.95	212.51	24.29	431.87	210.2	212.513	-0.205	599.0	4821.7
8000.	231.4	22.094	12.29	218.40	25.04	445.23	207.4	218.404	-0.211	627.4	4882.1
8100.	229.9	22.580	12.62	224.43	25.81	458.79	204.7	224.426	-0.218	656.9	4942.6
8200.	228.5	23.068	12.97	230.52	26.57	472.38	202.3	230.520	-0.224	687.0	5002.3
8300.	227.2	23.569	13.32	236.83	27.36	486.32	199.9	236.827	-0.230	718.7	5063.1
8400.	226.0	24.077	13.68	243.28	28.15	500.43	197.7	243.279	-0.237	751.5	5123.9
8500.	224.8	24.593	14.06	249.88	28.95	514.72	195.7	249.876	-0.244	785.4	5184.6
8600.	223.7	25.110	14.43	256.56	29.76	529.03	193.8	256.560	-0.251	820.3	5243.6
8700.	222.7	25.642	14.82	263.47	30.58	543.66	192.1	263.474	-0.258	856.7	5304.1
8800.	221.8	26.181	15.22	270.55	31.41	558.45	190.5	270.549	-0.266	894.5	5364.6
8900.	220.9	26.724	15.62	277.72	32.24	573.23	189.1	277.718	-0.273	933.3	5424.4
9000.	220.2	27.281	16.04	285.14	33.09	588.33	187.7	285.137	-0.281	973.9	5484.8
9100.	219.5	27.847	16.47	292.74	33.95	603.57	186.6	292.736	-0.289	1016.0	5545.2
	240.0		40.00	200 44			105 5				FORF A

Figura 95 – Aba Formatted Results - continuação

_P2K5752555S_09_T5_Finish_Cap_Cr - 0 06/29/2022 16:41 BallisticMatch2000 Version 4.1.0

***** Ballistic Match Table Output ******											
	Remaining	Angle of		Angle of		Kinetic		Vertex		Vertex	
Range	Velocity	Time	Eleva	tion	De	scent	Energy	Drop	Drift	Height	Range
m	m/sec	sec	deg.	G-mils	deg.	G-mils	kilojo	G-mils	G-mils	m	m
9300	. 218.3	29.002	17.35	308.42	35.68	634.31	184.6	308.421	-0.306	1104.5	5666.3
9400	. 217.9	29.598	17.81	316.61	36.56	649.97	183.8	316.605	-0.314	1151.5	5726.5
9500	. 217.5	30.205	18.28	324.99	37.45	665.74	183.2	324.994	-0.323	1200.2	5786.8
9600	. 217.2	30.817	18.76	333.53	38.33	681.49	182.7	333.529	-0.332	1250.4	5846.5
9700	. 217.0	31.447	19.26	342.38	39.24	697.52	182.3	342.378	-0.342	1303.0	5906.8
9800	. 216.8	32.083	19.77	351.38	40.14	713.51	182.1	351.379	-0.351	1357.1	5966.1
9900	. 216.7	32.739	20.29	360.73	41.05	729.78	181.9	360.730	-0.361	1414.0	6026.4
10000	. 216.7	33.401	20.83	370.35	41.96	745.87	182.0	370.354	-0.371	1473.3	6086.5
10100	. 216.4	33.457	21.38	380.17	41.68	741.03	181.4	380.170	-0.373	1534.3	6145.6
10200	. 216.1	33.516	21.96	390.40	41.40	736.04	180.8	390.396	-0.375	1598.8	6205.6
10300	. 215.7	33.578	22.55	400.84	41.12	730.97	180.2	400.839	-0.377	1665.3	6264.7
10400	. 215.3	33.645	23.16	411.75	40.82	725.73	179.5	411.750	-0.379	1735.5	6324.2
10500	. 214.8	33.716	23.80	423.04	40.52	720.36	178.8	423.044	-0.382	1809.1	6383.5
10600	. 214.4	33.791	24.45	434.64	40.21	714.92	178.0	434.636	-0.384	1885.5	6442.1
10700	. 213.9	33.872	25.13	446.82	39.90	709.25	177.1	446.823	-0.387	1966.7	6500.9
10800	. 213.3	33.958	25.84	459.38	39.57	703.51	176.2	459.383	-0.390	2051.3	6560.5
10900	. 212.7	34.053	26.59	472.67	39.24	697.58	175.3	472.669	-0.393	2141.9	6618.6
11000	. 212.1	34.154	27.36	486.46	38.90	691.55	174.2	486.457	-0.396	2236.9	6675.7
11100	. 211.4	34.264	28.18	500.94	38.55	685.34	173.0	500.937	-0.400	2337.8	6732.4
11200	. 210.6	34.387	29.05	516.51	38.18	678.78	171.7	516.513	-0.404	2447.6	6789.3
11300	. 209.7	34.521	29.97	532.87	37.81	672.13	170.3	532.872	-0.408	2564.2	6844.6
11400	. 208.7	34.673	30.97	550.50	37.42	665.29	168.7	550.499	-0.413	2691.4	6899.1
11500	. 207.6	34.850	32.07	570.07	37.02	658.07	166.9	570.070	-0.419	2834.2	6953.6
11600	. 206.3	35.054	33.27	591.44	36.60	650.62	164.8	591.440	-0.426	2992.0	7005.7
11700	204.7	35.305	34.65	615.93	36.16	642.90	162.3	615.932	-0.434	3175.1	7055.7
11800	. 202.6	35.636	36.32	645.73	35.71	634.83	159.0	645.732	-0.444	3400.6	7103.2
11900	. 199.6	36.136	38.59	686.09	35.24	626.55	154.4	686.094	-0.460	3710.4	7143.2

Figura 96 – Aba Formatted Results - continuação