PROVA DE FÍSICA DO VESTIBULAR 96/97 DO

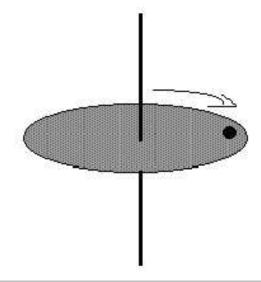
INSTITUTO MILITAR DE ENGENHARIA (03/12/96)

1ª Questão:

Valor: 1,0

Suponha que a velocidade de propagação \mathbf{v} de uma onda sonora dependa somente da pressão \mathbf{P} e da massa específica do meio $\boldsymbol{\mu}$, de acordo com a expressão:

$$\mathbf{v} = \mathbf{P}^{\mathbf{x}} \mathbf{\mu}^{\mathbf{y}}$$


Use a equação dimensional para determinar a expressão da velocidade do som, sabendo-se que não existe constante adimensional entre estas grandezas.

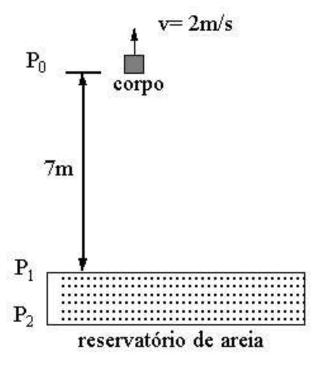
2ª Questão:

Valor : 1,0

Um disco rotativo paralelo ao solo é mostrado na figura. Um inseto de massa $\mathbf{m}=1,0$ g está pousado no disco a 12,5 cm do eixo de rotação. Sabendo-se que o coeficiente de atrito estático do inseto com a superfície do disco é $\boldsymbol{\mu}_{\mathbf{e}}=0,8$, determine qual o valor mínimo da velocidade angular, em rpm (rotações por minuto), necessário para arremessar o inseto para fora do disco.

Dado:
$$g = 10 \text{ m/s}^2$$

3^a Questão:


Valor: 1,0

Um corpo de 4kg é puxado para cima por uma corda com velocidade

1 of 6

constante igual a 2 m/s. Quando atinge a altura de 7m em relação ao nível da areia de um reservatório, a corda se rompe, o corpo cai e penetra no reservatório de areia, que proporciona uma força constante de atrito iqual a 50N. É verificado que o corpo leva 4s dentro do reservatório até atingir o fundo. Faça um esboço gráfico da velocidade do corpo em função do tempo, desde o instante em que a corda se rompe (P_0) até atingir o fundo do reservatório (P_2), indicando os valores para os pontos P_0 , P_1 e P_2 , sendo P_1 o início do reservatório.

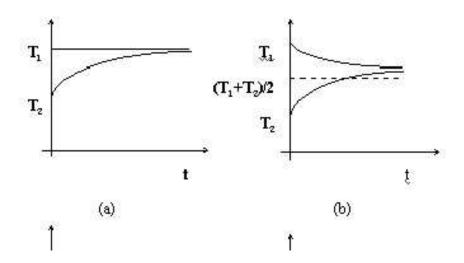
Dado: $g = 10 \text{m/s}^2$

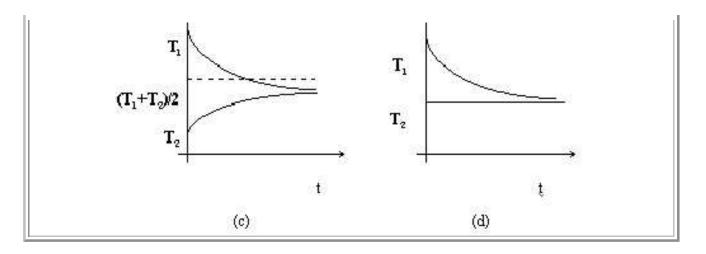


4^a Questão:

Valor: 1,0

Uma barra uniforme e homogênea de peso P, tem seu centro de gravidade (C.G.) na posição indicada na figura abaixo. A única parede considerada com atrito é aquela na qual a extremidade esquerda da barra está apoiada. O módulo da força de atrito F_{at} é igual ao peso da barra. Determine o valor do ângulo na posição de equilíbrio, em função do comprimento da barra L e da distância entre as paredes a


->

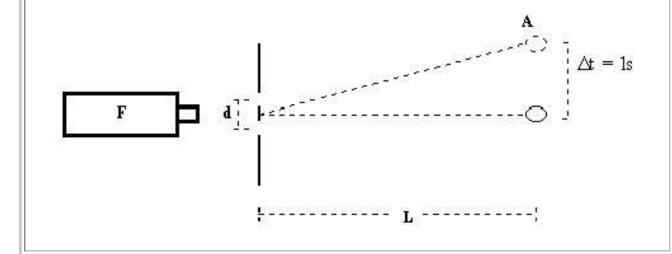

5^a Questão:

Valor : 1,0

Dois corpos, cujas temperaturas iniciais valem $\mathbf{T_1}$ e $\mathbf{T_2}$, interagem termicamente ao longo do tempo e algumas das possíveis evoluções são mostradas nos gráficos abaixo. Analise cada uma das situações e discorra a respeito da situação física apresentada, procurando, caso procedente, tecer comentários acerca dos conceitos de reservatório térmico e capacidade térmica. Fundamente, sempre que possível, suas afirmações na Primeira Lei da Termodinâmica.

3 of 6 06-09-2005 17:09

6^a Questão: Valor : 1,0

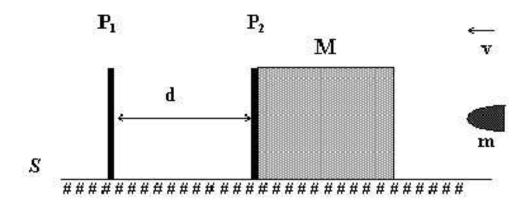

Afinando um instrumento de cordas, um músico verificou que uma das cordas estava sujeita a uma força de tração de 80N e que ao ser dedilhada, vibrava com uma freqüência 20Hz abaixo da ideal. Sabendo-se que a parte vibrante da corda tem 100cm de comprimento, 0,5g de massa e que deve ser afinada no primeiro harmônico, determine a força de tração necessária para afinar a corda.

7^a Questão: Valor : 1,0

Na figura abaixo, a partícula **A**, que se encontra em queda livre, passa pelo primeiro máximo de interferência com velocidade de 5m/s e, após um segundo, atinge o máximo central. A fonte de luz **F** é monocromática com comprimento de onda de 5000 Angstrons e a distância **d** entre os centros da fenda dupla é igual a 10 ⁻⁶m. Calcule a distância **L**.

Dado:

aceleração da gravidade = 10 m/s².


4 of 6 06-09-2005 17:09

8^a Questão:

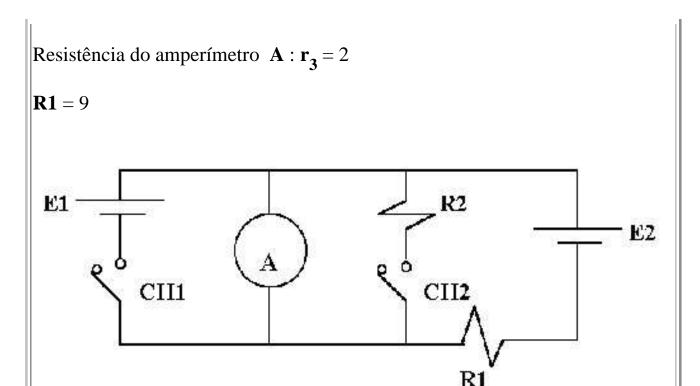
Valor : 1,0

Na figura abaixo, as placas metálicas $\mathbf{P_1}$ e $\mathbf{P_2}$ estão inicialmente separadas por uma distância $\mathbf{d} = 12$ cm. A placa $\mathbf{P_1}$ está fixada na superfície plana S e a placa $\mathbf{P_2}$ está colocada na face de um cubo de madeira de massa \mathbf{M} , que pode deslizar sem atrito sobre S. A capacitância entre as placas é de 6F. Dispara-se um tiro contra o bloco de madeira com uma bala de massa \mathbf{m} , ficando a bala encravada no bloco. Oito milisegundos após o impacto, a capacitância iguala-se a 9F. Determine a velocidade da bala antes do impacto. (Despreze a resistência do ar e a massa de $\mathbf{P_2}$).

Dados: M = 600g; m = 6g

9^a Questão:

Valor : 1,0

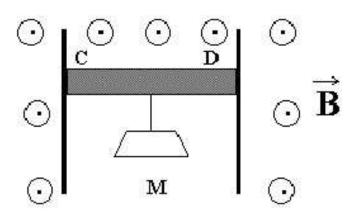

No circuito da figura abaixo, as chaves **CH1** e **CH2** estão abertas e o amperímetro **A** indica que existe passagem de corrente. Quando as duas chaves estão fechadas, a indicação do amperímetro **A** não se altera. Determinar:

- a) o valor da resistência R2;
- b) a potência dissipada por efeito Joule na resistência **R2** quando **CH1** e **CH2** estão fechadas.

Dados: Bateria 1: fem **E1**= 12V; resistência interna $\mathbf{r_1} = 1$;

Bateria 2: fem **E2**= 12V; resistência interna $\mathbf{r_2} = 1$;

5 of 6 06-09-2005 17:09



10^a Questão: Valor : 1,0

Considere uma barra condutora reta (**CD**) com um corpo de massa **M** a ela ligada, imersa em uma região com um campo magnético uniforme **B**, podendo se mover apoiada em dois trilhos condutores verticais e fixos. O comprimento da barra é igual a 500mm e o valor do campo é igual a 2 T. Determine a massa (conjunto corpo + barra) que permitirá o equilibrio do sistema quando uma corrente igual a 60A circular na barra.

Dados: Aceleração da gravidade $g = 10 \text{m/s}^2$;

Despreze o atrito entre a barra e os trilhos.

6 of 6